HUMIDITY VELOCITY DEW ΡΟΙΝΤ **AIR**

11

8

(4)

T

7

200 20

YOUR PARTNER IN SENSOR TECHNOLOGY

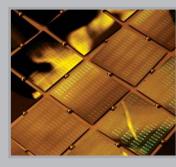
C O ₂ TEMPERATURE CALIBRATION

Our quality policy is the guide to all our business dealings

The customer is our raison d'etre. Our motivation is the recognition and fulfilling of specific customer demands in a competent and reliable fashion with a view to establishing long-term partnerships.

For the owner, we want to be a future-oriented company which achieves good returns through its products and services in the field of sensor technology, and which, as such, forms an economically healthy element within the group of companies.

We want to ensure our competitiveness through supplier relations based on partnerships. We aspire, therefore, to long-term co-operations with reliable and competent suppliers from whom we expect products and services at optimal value for money. Every employee should regard his or her responsibilities as an important contribution towards fulfilling the clients' and owner's expectations. We want competent, committed and responsible employees whom we offer a long-term view within the company.


We want to be proud of ourselves. We want to contribute towards society through our activities. During development and production we deal with the environment and resources in a responsible manner by use of an integrated management system.

High-Tech Products - Our Market

- Automobile industry
- Heating, ventilation and air conditioning
- Industrial dryers
- Measurement and control technology
- Climate control in agriculture
- Process and environmental control
- Meteorology
- Home appliances / white goods

Based on the wide range of standard products and on the know-how in HVAC and industrial applications, **E+E ELEKTRONIK** entered the market of mass applications and became a reliable and internationally recognized partner of the industry. Customization of our standard products to fulfill specific customers requirements is one of our main strengths.

Continuous investments in manufacturing facilities and innovative technology for both humidity and air velocity measuring instrumentation are guaranteeing that **E+E ELEKTRONIK** will master all future development requirements.

New clean rooms, state-of-the-art machinery for thin film production and a reliable quality assurance system are the conditions for the high quality of all our products.

Our accredited calibration laboratory for relative humidity, dew point and temperature offers documented checks and calibration of measuring instruments.

CERTIFICAT	<u></u>		
CERTIFICADO + CE	CERTIFICATE	OQS-CERTIFICATE	Federal Weinity for Economics and Labour Observational Kalduratellawa (OKD)
•	The Certification Body of TUV 500 Management Service GmbH certifies that E+E Elektronik Ges.m.b.H. Lageteien 7 A-202 Experimentator	Orably Anna Toning, Certification to Bulletarian Markania Certification and Anna Certification and Bulletarian Markania Certification and Bulletarian Anna Anna Anna Anna Anna Anna Anna A	CERTIFICATE OF ACCREDITATION We content that the calculator Laboratory at E + E Elektronik GmbH Languesen 7, A100 Expension a accented in the Unique guarantee.
е • сертификат	has established and apples an Enveronment Management System for Development, Manadexing and Dakibution of Sensors and Transmitters.	E+E Elektronik Gesellschoft m.b.H. A-409 Engewinder, Longwiesen?	humidity of air and temperature The acceleration was given with the document (his, UMVIV-46 1130040-0115000 date 117 March 2008. The scope of acceleration is available in the acceleration document and in the
CERTIFICATE ◆ 開圧者	An address performed. Report No. 1700/2782 Proof has been furnished here requirements according to ISO 104001: 2004 are utilize. The ordificions will in orospandion with the main-confinition will 2011-11-37 Certificion Regulation (No. 12 - 134 542/108 195)	Scope of applicators: Design; protochors and sales al association demonstration NACE: 31:20 BAC; 19 Results security functions: not applicable the segmentation (% constraints) and	directory of according adaption for a directoriane of Auania. The regression number of the adaptional for adaption of the other than the adaption of the other of the adaption of the other of the adaption of the other othe
ZERTIFIKAT + CER	M. Hople Inc. Anton The State of the State o	An AND	Der deg Freisleher Gereil

Humidity / Temperature Transmitters EE32 / EE33 EE29 / EE31 EE30EX EE23 EE22 EE21 EE16 EE14 EE10 EE08 NEW EE06 NEW OEM Products EE99-1 Dew Point / Condensation Measurement EE35 NEW EE371 / EE372 NEW EE375	01 09 18 23 29 33 35 37 39 41 43 46 47 62 66 69	Measurement of Moisture Content in Oil (1) EE36 NEW EE381 OMNIPORT 20 Hand-Helds HUMIPORT 05 / 05 IR / 10 / 20 OMNIPORT 20 Humidity Monitoring NEW HUMIMAP 20 HUMLOG 10 EE02 Humidity Sensor Elements General Information HC105 / HC109 HC104-Kxx HC201	55 59 121 124 121 49 53 45 73 76 78 80	
EE31	09	HC103M2	82	
NEW EE45-01	71	Handling Instructions	84	
Air Velocity Measurement				
Transmitters EE75 EE66 EE65 NEW EE575 EE56 EE55	86 91 93 95 97 100	Hand-Helds OMNIPORT 20	121	
CO ₂ - Measurement		Temperature Measurement		
Transmitters EE85 EE80 EE82 Modul EE89	104 106 108 110	Transmitters NEW EE22-T EE16-T EE10-T Hand-Helds THERMOPORT 20 OMNIPORT 20	113 116 118 126 121	
Hand-Helds		Calibration / Calibration Serv	ices	
OMNIPORT 20 HUMIPORT 05 / 05 IR / 10 / 20 THERMOPORT 20	121 124 126	High-Precision Humidity Calibrator HUMOR 20 Humidity Calibration Set Accredited E+E Calibration Services	129 134 135	
Appendix				
Accessories Product Selection Guide Scaling of T-outputs	138 145 146	Humidity Measurement Basics Air Velocity Measurement Basics CO ₂ Measurement Basics Temperature Measurement Basics Humidity Calibration Basics	147 154 156 157 158	

NEWS

Humidity Measurement

- Industrial transmitters
- Transmitters for intrinsically safe applications
- Transmitters for demanding applications in climate control systems
- Transmitters for HVAC applications
- Hygrostats

(Ex)

- OEM transmitters
- Transmitters for dew point / condensation
 measurement
- GL Transmitters for measurement of moisture content in oil
 - Hand-helds
 - Humidity monitoring
 - Humidity sensor elements

Air Velocity Measurement

- Industrial transmitters
- Transmitters for HVAC applications
- Air velocity switches
- Hand-helds

CO₂ Measurement

- Transmitters for HVAC applications
- Transmitters for agriculture applications

Temperature Measurement

- Transmitters
- Hand-helds

Hand-Helds

Hand-helds for the measurands: RH, T, Td, dv, r, v, aw, x

Calibration / Calibration Services

- High-precision humidity calibrator
- Humidity calibration set
- Accredited E+E calibration services

Appendix

- Accessories
- Product selection guide
- Scaling of T-outputs
- Humidiy measurement basics
- Air velocity measurement basics
- CO₂ measurement basics
- Temperature measurement basics
 - Humidity calibration basics

EE32/33 Series

Humidity / Temperature Transmitter for High Humidity and Chemical Applications

The highly accurate EE32/33 series are designed for fast and reliable measurement of relative humidity / dew point temperature / absolute humidity / ...under the most demanding conditions.

Neither condensation nor heavy chemical pollutions will affect prompt and reliable measurements. Process pressures as high as 100 bar (1450 psi) and continuous high humidity are also no problem for the EE32/33 series.

The core of the EE32/33 series is the new monolithic measurement cell type HMC1, manufactured in thin-film technology by E+E Elektronik.

Chemical contamination and also condensation will actually evaporate due to the innovative design of the HMC1 measurement cell. The monolithic construction of the sensor allows a fast return to normal conditions and a continuation of the measurement.

Additionally, with the inimitable E+E sensor coating the HMC1 measurement cell is even better protected against corrosive and short-circuit-causing conductive soils.

Distinctive models and mounting versions allow the EE32/33 series to be utilized in numerous applications:

- Measurement of relative humidity during temporary condensation: the measurement cell is briefly heated, but very intense
- Measurement of dew point temperature at continuous high humidity (EE33 only): the measurement cell is controlled and heated continuously
- Measurement of relative humidity at continuous high humidity: the measurement cell is controlled and heated continuously; an additional temperature sensor is added
- Measurement of relative humidity at high chemical exposure and average humidity:

the measurement cell is briefly heated, but very intense

 Measurement of relative humidity at process pressure up to 100bar (1450psi) and average humidity:

the measurement cell is installed in a special high pressure probe

The configuration software included in the scope of supply allows user friendly setup of the operation / sensor heating mode as well as selection and adjustment of the electrical outputs.

Environmental Conditions Model chemical pollution, temporary condensation A - wall mounting chemical pollution, temporary condensation B - duct mounting **C** - remote sensing probe up to 120°C (248°F) chemical pollution, temporary condensation D - remote sensing probe up to 180°C (356°F) chemical pollution, temporary condensation E - remote sensing probe, pressure tight up to 20bar (300psi) chemical pollution, temporary condensation - remote sensing probe, pressure tight up to 100bar (1450psi) chemical pollution, temporary condensation J - 2 remote sensing probes (RH-measurement), continuous high humidity and condensation pressure tight up to 20bar (300psi) continuous high humidity and condensation

K - remote sensing probe (Td-measurement) pressure tight up to 20bar (300psi)

Typical Applications

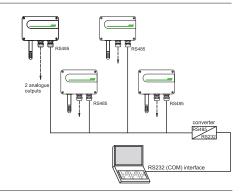
pharmaceutical and food industry dryers for ceramics, wood, concrete, polyester, etc mushroom farms high-humidity storage rooms climate, test and curing chambers meteorology heated, monolithic measurement cell working range 0...100% RH / -40...+180°C (-40...356°F) measurement near condensation fast recovery after condensation chemical purge after chemical exposure pressure tight up to 100bar (1450psi) calculation of additional physical quantities optional sensor coating traceable calibration

heated, monolithic measurement cell

Features

EE32/33

Product Comparison EE32 - EE33_


Functions	Comment	EE32	EE33
Measurement of humidity and temperature		\checkmark	\checkmark
Calculation h, r, dv, Tw, Td, Tf, e			\checkmark
2 freely scaleable and configurable analogue outputs		\checkmark	\checkmark
Remote sensing probe up to 20m (65.6ft)		\checkmark	\checkmark
On-site adjustment for relative humidity and temperature		\checkmark	\checkmark
On-site adjustment for relative humidity and temperature LED indication of transmitter status / error diagnosis of pr	obes	\checkmark	\checkmark
RS232 for transmitter configuration via PC		\checkmark	\checkmark
Configuration software	standard supply	\checkmark	\checkmark
Alternating display with MIN/MAX indication	optional	\checkmark	\checkmark
2 freely configurable alarm outputs	optional	\checkmark	\checkmark
Removeable sensing probe	optional	\checkmark	\checkmark
Sensor protection with coating	optional	\checkmark	\checkmark
Pluggable electrical connections	optional	\checkmark	\checkmark
Data output via RS232 interface	•		\checkmark
Data output via RS485 interface	optional		\checkmark
Network for up to 32 transmitters via RS485 bus	optional		\checkmark
Ethernet interface for networking and remote monitoring	optional		\checkmark
Data logging and analysis PC software	optional		\checkmark

Networkability / Ethernet Interface_

The optional RS485 interface (order code N) allows for building a network of up to 32 transmitters.

The measurement data can be collected in a shared database and made available for all kinds of further processing.

Additionally, the transmitters can be networked with an Ethernet module (order code E) for remote monitoring.

Contraction Contra

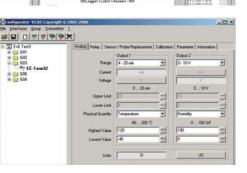
Software_

Configuration Software: (included in the scope of supply)

The configuration software allows flexible and simple adjustment of the analogue and alarm outputs in accordance with the requirements. The adjustment / calibration of the humidity and temperature outputs is possible as well. Furthermore the settings of the start and duration of the heating of the measurement cell can be defined.

Data Logging / Analysis Software: (EE33 only ordering code HA010602)

An additional software package enables data recording and management, including alerts by e-mail or text message when set points are triggered.


It is also possible to present the collected measurement data on a PC in graphs or tables. If the option N (RS485) or E (Ethernet) is selected in the ordering code, the data logging and analysis software will be included in the scope of supply.

Integrated Display_

The actual measurement data and the corresponding Min/Max values can be indicated in an optional display (order code D05). The physical quantity to be displayed is selected by the push buttons next to the display.

Alarm Outputs


An optional alarm module with 2 relay outputs is available for control and alarm purposes (order code SW). The selection of the physical quantity and the setting of threshold and hysteresis can be made with the configuration software included in the scope of supply.

EE32/33

Connection Versions

Technical Data EE33____

Measurement values

Humidity sensor ¹⁾						hea	ted, mo	nolithi	c measu	remer	nt cell HM	1C1		
Working range ¹⁾							100% R							
Accuracy ^{*)} (including hyst	ling hysteresis, non-linearity and repeatabil						ility, traceable to intern. standards, administrated by NIST, PTB, BEV)							
-1540°C (5104		≤90%) % RH					
-1540°C (5104	4°F)	>90%	RH			± 2.	3% RH							
-2570°C (-131	58°F)					± (1	.4 + 1%	*mv)	% RH					
-40180°C (-40	.356°F)						.5 + 1.5							
Temperature dependen	ce of e					typ.	± 0.01%		°C (0.005	5% RH/'	°F)			
Response time with met	al grid f	ilter at	20°C	(68°F) /	/ t ₉₀	< 15	วิร							
Temperature											101			
Temperature sensor ele									irement			40 00%		
Working range sensing	nead			:E33-N :E33-N	VIFIA: - NETC: -	4060 40 11	D°C (-40	.140°F) \ 249°⊑		E33-M ⊑33-MI	F I B: FTD/E/I/ I/	4080°C- <u>K: -40180°</u>	(-40176°F	
Accuracy				L00 N			20 0 (-+0	24 01	/			11. 40100	0 (-+0550)	
Accuracy					∆°C	0.6								
						0.4 -								
						0.3								
						0.2		\sim						
						0						+++ ∘c		
						-0.1 -	-30 -20 -10 0	10 20 30	40 50 60 70 8	0 90 100 11	0 120 130 140 150	160 170 180		
						-0.2		\frown						
						-0.4					_			
						-0.5 —								
						-0.6								
Temperature dependen	ice of e	lectro	nics			tvn	± 0.005	°C/°C						
External temperature p		1001101					10.000		,					
tputs ²⁾	TODC						100 (DII	•//						
Two freely selectable an	a obuict		laloge		0010	0 - 1				-1mA	< l _i < 1n	nA		
			laloge			0 - { 0 - { 4 - {	5V 10V 20mA			-1mA -1mA R _L < \$	< l _L < 1n < l _L < 1n 500 Ohm	nA nA		
			laioge			0 - 8 0 - 7 4 - 2 0 - 2	5V 10V 20mA 20mA			-1mA -1mA R _L < { R _L < {	< I _L < 1n < I _L < 1n 500 Ohm 500 Ohm	nA nA		
Digital interface						0 - { 0 - { 4 - {	5V 10V 20mA 20mA			-1mA -1mA R _L < { R _L < {	< I _L < 1n < I _L < 1n 500 Ohm 500 Ohm	nA nA	net	
						0 - 8 0 - 7 4 - 2 0 - 2	5V 10V 20mA 20mA			-1mA -1mA R _L < { R _L < {	< I _L < 1n < I _L < 1n 500 Ohm 500 Ohm	nA nA	net	
Digital interface			2)3)			0 - 5 0 - 7 4 - 2 0 - 2 RS2	5V 10V 20mA 20mA 232	to		-1mA -1mA R _L < R _L < optior	< lī < 1n < lī < 1n 500 Ohm 500 Ohm nal: RS48	nA nA 35 or etherr	net	
Digital interface x. adjustable measure	ment r	ange	2)3)	EE3	33-A	0 - 9 0 - 2 4 - 2 0 - 2 RS2	5V 10V 20mA 20mA 232	EE3	3-C	-1mA -1mA $R_L < {}$ $R_L < {}$ optior	< I _L < 1n < I _L < 1n 500 Ohm 500 Ohm	nA nA 35 or etherr	unit	
Digital interface x. adjustable measure Humidity	ment r RH	ange from	_2)3) 1	EE3 100	33-A	0 - 1 0 - 2 4 - 2 0 - 2 RS2 EE3 100	5V 10V 20mA 20mA 232	EE33 100	3-C	-1mA -1mA R _L < R _L < optior EE3	< lī < 1n < lī < 1n 500 Ohm 500 Ohm nal: RS48	nA nA 35 or etherr	unit % rF	
Digital interface c. adjustable measure Humidity Temperature	ment r RH T	from	2)3) 1 	EE3 100 60	33-A (140)	0 - 9 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80	5V 10V 20mA 20mA 232 3-B (176)	EE33 100 120	(248)	-1mA -1mA R _L < <u></u> R _L < <u></u> optior EE3: 100	< I_{L}^{-} < 1n < I_{L}^{-} < 1n 500 Ohm 500 Ohm nal: RS48 3-D/E/I/J (356)	nA nA 35 or etherr EE33-K /	unit % rF °C (°F	
Digital interface . adjustable measure Humidity Temperature Dew point temperature	ment r RH T Td	ange from -40 -40	2)3) 1 (-40) (-40)	EE3 100 60 60	33-A (140) (140)	0 - 9 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80	5V 10V 20mA 20mA 232 3-B (176) (176)	EE33 100 120 100	(248) (212)	-1mA -1mA R _L < { R _L < { Coption EE3: 100 180 100	< $I_{L} < 1n$ < $I_{L} < 1n$ 500 Ohm 500 Ohm nal: RS48 3-D/E/I/J (356) (212)	nA nA 35 or etherr EE33-K / / 100 (212)	unit % rF °C (°F °C (°F	
Digital interface c. adjustable measure Humidity Temperature Dew point temperature Frost point temperature	ment r RH T Td Tf	ange from -40 -40 -40	2)3) 1 (-40) (-40) (-40)	EE3 100 60 60 0	33-A (140) (140) (32)	0 - 9 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80 80 0	5V 10V 20mA 20mA 232 3-B (176) (176) (32)	EE3: 100 120 100 0	(248) (212) (32)	-1mA -1mA R _L < 5 optior EE33 100 180 100 0	< I _L < 1n < I _L < 1n 500 Ohm 500 Ohm nal: RS48 3-D/E/I/J (356) (212) (32)	nA nA 35 or etherr / / 100 (212) 0 (32)	unit °C (°F °C (°F °C (°F °C (°F	
Digital interface c. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature	RH T Td Tf Tw	ange from -40 -40 0	2)3) 1 (-40) (-40) (-40) (32)	EE3 100 60 60 0 60	33-A (140) (140) (32) (140)	0 - 9 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80 0 80	5V 10V 20mA 20mA 232 3-B (176) (176) (32) (176)	EE33 100 120 100 0 100	(248) (212) (32) (212)	-1mA -1mA R _L < { R _L < { Coption 100 180 100 0 100	< $I_{L} < 1n$ < $I_{L} < 1n$ 500 Ohm 500 Ohm nal: RS48 3-D/E/I/J (356) (212) (32) (212)	nA nA 35 or etherr EE33-K / / 100 (212)	unit % rF °C (°F °C (°F °C (°F °C (°F	
Digital interface x. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial pressu	RH T Td Tf Tw	ange from -40 -40 -40 0 0	2)3) 1 (-40) (-40) (-40) (32) (0)	EE3 100 60 60 0 60 200	(140) (140) (32) (140) (3)	0 - 9 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80 0 80 0 80 500	5V 10V 20mA 20mA 232 3-B (176) (176) (32) (176) (7.5)	EE33 100 120 100 0 100 1100	(248) (212) (32) (212) (212)	-1mA -1mA R _L < { R _L < { R _L < { 100 180 100 100 100 1100	< $I_{L} < 1n$ < $I_{L} < 1n$ 500 Ohm 500 Ohm nal: RS48 3-D/E/I/J (356) (212) (32) (212) (212)	nA nA 35 or etherr / / 100 (212) 0 (32)	unit % rF °C (°F °C (°F °C (°F °C (°F mbar (ps	
Digital interface c. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial pressu Mixture ratio	RH T Td Td Tf Tw ure e r	ange from -40 -40 -40 0 0	2)3) 1 (-40)	EE3 100 60 60 0 60 200 425	33-A (140) (140) (32) (140) (3) (2900)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80 0 80 500 999	5V 10V 20mA 20mA 232 3-B (176) (176) (32) (176) (7.5) (9999)	EE3: 100 120 100 0 100 1100 999	(248) (212) (32) (212) (15) (9999)	-1mA -1mA R _L < R _L < 0ptior EE3: 100 180 100 100 100 1100 999	< $I_{L} < 1n$ < $I_{L} < 1n$ 500 Ohm 500 Ohm nal: RS48 3-D/E/I/J (356) (212) (32) (212) (212) (15) (9999)	nA nA 35 or etherr / / 100 (212) 0 (32)	unit % rF °C (°F °C (°F °C (°F mbar (ps g/kg (gr/	
Digital interface c. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial press Mixture ratio Absolute humidity	RH T Td Td Tf Tw ure e r dv	ange from -40 -40 -40 0 0 0 0	(-40) (-40)	EE3 100 60 60 0 60 200 425 150	(140) (140) (32) (140) (3) (2900) (60)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80 0 80 500 999 300	5V 10V 20mA 20mA 232 3-B (176) (176) (32) (176) (7.5) (9999) (120)	EE3 100 120 100 0 100 1100 999 700	(248) (212) (32) (212) (15) (9999) (300)	-1mA -1mA R _L < R _L < optior EE33 100 180 100 100 100 999 700	< $I_{L} < 1n$ < $I_{L} < 1n$ 500 Ohm 500 Ohm nal: RS48 3-D/E/I/J (356) (212) (32) (212) (212) (32) (212) (30)	nA nA 35 or etherr / / 100 (212) 0 (32) / / / /	unit % rF °C (°F °C (°F °C (°F mbar (ps g/kg (gr/ g/m ³ (gr/	
Digital interface Adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial press Mixture ratio Absolute humidity Specific enthalpy	RH T Td Td Tf Tw ure e r	ange from -40 -40 -40 0 0	2)3) 1 (-40)	EE3 100 60 60 0 60 200 425 150	33-A (140) (140) (32) (140) (3) (2900)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80 0 80 500 999 300	5V 10V 20mA 20mA 232 3-B (176) (176) (32) (176) (7.5) (9999) (120)	EE3 100 120 100 0 100 1100 999 700	(248) (212) (32) (212) (15) (9999) (300)	-1mA -1mA R _L < R _L < optior EE33 100 180 100 100 100 999 700	< $I_{L} < 1n$ < $I_{L} < 1n$ 500 Ohm 500 Ohm nal: RS48 3-D/E/I/J (356) (212) (32) (212) (212) (15) (9999)	nA nA 35 or etherr / / 100 (212) 0 (32) / / / /	unit % rF °C (°F °C (°F °C (°F mbar (ps g/kg (gr/	
Digital interface X. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial press Mixture ratio Absolute humidity Specific enthalpy Devalue	RH T Td Td Tf Tw ure e r dv	ange from -40 -40 -40 0 0 0 0	(-40) (-40)	EE3 100 60 60 0 60 200 425 150	(140) (140) (32) (140) (3) (2900) (60)	0 - 4 0 - 7 4 - 2 0 - 2 RS2 EE3 100 80 80 500 999 300 1000	5V 10V 20mA 20mA 232 3-B (176) (176) (32) (176) (32) (176) (9999) (120) (375000)	EE3 100 120 100 0 100 1100 999 700	(248) (212) (32) (212) (15) (9999) (300)	-1mA -1mA R _L < R _L < optior EE33 100 180 100 100 100 999 700	< $I_{L} < 1n$ < $I_{L} < 1n$ 500 Ohm 500 Ohm nal: RS48 3-D/E/I/J (356) (212) (32) (212) (212) (32) (212) (30)	nA nA 35 or etherr / / 100 (212) 0 (32) / / / /	unit % rF °C (°F °C (°F °C (°F mbar (ps g/kg (gr/ g/m ³ (gr/	
Digital interface X. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial press Mixture ratio Absolute humidity Specific enthalpy	RH T Td Td Tf Tw ure e r dv	ange from -40 -40 -40 0 0 0 0	(-40) (-40)	EE3 100 60 60 0 60 200 425 150	(140) (140) (32) (140) (3) (2900) (60)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80 0 80 500 999 300 1000 83	5V 10V 20mA 20mA 232 3-B (176) (176) (176) (176) (176) (176) (176) (120) (120) (120) (375000) 35V DC	EE3 100 120 100 100 100 1100 999 700 2800	(248) (212) (32) (212) (15) (9999) (300)	-1mA -1mA R _L < R _L < optior EE33 100 180 100 100 100 999 700	< $I_{L} < 1n$ < $I_{L} < 1n$ 500 Ohm 500 Ohm nal: RS48 3-D/E/I/J (32) (212) (32) (212) (32) (212) (32) (212) (30) (9999) (300) (999999)	nA nA 35 or etherr / / 100 (212) 0 (32) / / / / / /	unit °C (°F °C (°F °C (°F °C (°F mbar (ps g/kg (gr/ g/m ³ (gr/ kJ/kg (lbf	
Digital interface x. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial press Mixture ratio Absolute humidity Specific enthalpy neral Supply voltage	RH T Td Tf Tf Tw ure e r dv h	ange from -40 -40 0 0 0 0	2)3) 1 (-40) (-40) (-40) (-40) (32) (0) (0) (0) (0) (0)	EE3 100 60 0 60 200 425 150 400	(140) (140) (32) (140) (3) (2900) (60)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80 0 80 500 999 300 1000 83 12	5V 10V 20mA 20mA 232 3-B (176)	EE3: 100 120 100 100 1100 999 700 2800	(248) (212) (32) (212) (15) (9999) (300) (999999)	-1mA -1mA R _L < \$ R _L < \$ 0ption 100 180 100 100 1100 999 700 2800	< $I_{L} < 1n$ < $I_{L} < 1n$ 500 Ohm 500 Ohm nal: RS48 3-D/E/I/J (356) (212) (32) (212) (32) (212) (32) (212) (30) (9999) (99999) (999999)	nA nA 35 or etherr / / 100 (212) 0 (32) / / / /	unit °C (°F °C (°F °C (°F °C (°F mbar (ps g/kg (gr/ g/m ³ (gr/ kJ/kg (lbf	
Digital interface X. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial press Mixture ratio Absolute humidity Specific enthalpy neral Supply voltage Current consumption	RH T Td Tf Tw ure e r dv h	ange from -40 -40 0 0 0 0 0	(-40) (-40) (-40) (-40) (-40) (-40) (-40) (0) (0) (0) (0) (0) (0) (0) (0)	EE3 100 60 0 60 200 425 150 400	(140) (140) (32) (140) (3) (2900) (60)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80 0 80 500 999 300 1000 83 12	5V 10V 20mA 20mA 232 3-B (176)	EE3: 100 120 100 0 100 1100 999 700 2800 2800	(248) (212) (32) (15) (9999) (300) (999999) (999999)	-1mA -1mA R _L < { R _L < { 0 100 100 100 100 100 2800 mA / 80	< I _L < 1n < I _L < 1n 500 Ohm 500 Ohm nal: RS48 3-D/E/I/J (356) (212) (32) (212) (32) (212) (32) (212) (300) (99999) (300) (99999) (optional DmA	nA nA 35 or etherr / / 100 (212) 0 (32) / / / / / /	unit °C (°F °C (°F °C (°F °C (°F mbar (ps g/kg (gr/ g/m ³ (gr/ kJ/kg (lbf	
Digital interface X. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial press Mixture ratio Absolute humidity Specific enthalpy neral Supply voltage Current consumption	RH T Td Tf Tw ure e r dv h	ange from -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (-40) (-40) (-40) (0) (0) (0) (0) (0) (0) (0) (0) (0) (EE3 100 60 0 60 200 425 150 400	(140) (140) (32) (140) (3) (2900) (60)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80 0 80 500 999 300 1000 83 12 for 2	5V 10V 20mA 20mA 232 3-B (176) (176) (176) (176) (176) (176) (176) (19999) (120) 0 (375000) 35V DC .30V AC 24V DC,	EE3: 100 120 100 100 1100 999 700 2800 2800	(248) (212) (32) (15) (9999) (300) (999999) typ. 40n typ. 40n	-1mA -1mA R _L < { R _L < { 0 100 100 100 100 100 2800 A / 80 A / 80 A / 16	< I _L < 1n < I _L < 1n 500 Ohm 500 Ohm nal: RS48 3-D/E/I/J (356) (212) (32) (212) (32) (212) (32) (300) (99999) (300) (99999) (optional DmA 60mA	nA nA 35 or etherr 7 7 100 (212) 0 (32) 7 7 7 7 100240V7	unit °C (°F °C (°F °C (°F °C (°F mbar (ps g/kg (gr/ g/m ³ (gr/ kJ/kg (lbf	
Digital interface X. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Wet bulb temperature Water vapour partial press Mixture ratio Absolute humidity Specific enthalpy neral Supply voltage Current consumption	RH T Td Tf Tw ure e r dv h	ange from -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (-40) (-40) (-40) (0) (0) (0) (0) (0) (0) (0) (0) (0) (EE3 100 60 0 60 200 425 150 400	(140) (140) (32) (140) (3) (2900) (60)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80 0 80 500 999 300 1000 83 12 for 2 EE3	5V 10V 20mA 20mA 232 3-B (176) (176) (176) (176) (176) (176) (176) (19999) (120) 0 (375000) 35V DC 30V AC 24V DC, 33-MFTE	EE3: 100 120 100 100 1100 999 700 2800 2800 2800	(248) (212) (32) (15) (9999) (300) (999999) (999999) typ. 40n typ. 80n Kx: 0.01	-1mA -1mA R _L < R _L < 0 100 100 100 100 100 2800 A / 80 nA / 80 nA / 80 nA / 80 nA / 80 nA / 10 20ba	< $ _{L} < 1n$ < $ _{L} < 1n$ 500 Ohm 500 Ohm 500 Ohm al: RS48 3-D/E/I/J (356) (212) (32) (212) (32) (212) (300) (300) (99999) (300) (099999) (optional DmA 50mA ar (0.1530)	nA nA 35 or etherr 7 7 100 (212) 0 (32) 7 7 7 7 100240V7	unit °C (°F °C (°F °C (°F °C (°F mbar (ps g/kg (gr/ g/m ³ (gr/ kJ/kg (lbf	
Digital interface X. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial pressu Mixture ratio Absolute humidity Specific enthalpy neral Supply voltage Current consumption Pressure range for pres	RHL T Td Tf Tf ure e r dv h - 2x vol - 2x cur ssure ti	from 0 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (-40) (-40) (-40) (0) (0) (0) (0) (0) (0) (0) (0) (0) (EE3 100 60 0 60 200 425 150 400	(140) (140) (32) (140) (3) (2900) (60)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80 0 80 500 999 300 1000 83 12 for 2 EE3 EE3	5V 10V 20mA 20mA 232 3-B (176) (176) (176) (176) (176) (176) (176) (176) (176) (176) (176) (19999) (120) 0) (375000) 35V DC 330V AC 24V DC/ 33-MFTI 33-MFTI	EE3: 100 120 100 100 1100 999 700 2800 2800 2800	(248) (212) (32) (212) (15) (9999) (300) (999999) typ. 40n typ. 80n Kx: 0.01 100bar (t	-1mA -1mA R _L < { R _L < { R _L < { 0 100 100 100 100 100 2800 A / 80 A / 80 A / 16 20ba 01450	< I < 1n < I < 1n 500 Ohm 500 Ohm 500 Ohm nal: RS48 3-D/E/I/J (356) (212) (32) (212) (32) (212) (32) (30) 0 (99999) (300) 0 (999999) (00000 0 (999999) (000000 0 (0000000 0 (0000000000) (0000000000	nA nA 35 or etherr 35 or etherr 7 7 100 (212) 0 (32) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	unit °C (°F °C (°F °C (°F °C (°F mbar (ps g/kg (gr/ g/m ³ (gr/ kJ/kg (lbf	
Digital interface A adjustable measured Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial pressu Mixture ratio Absolute humidity Specific enthalpy heral Supply voltage Current consumption Pressure range for press	RHL T Td Tf Tw ure e r dv h - 2x vol - 2x cur ssure ti	from 0 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (-40) (-40) (-40) (0) (0) (0) (0) (0) (0) (0) (0) (0) (EE3 100 60 0 60 200 425 150 400	(140) (140) (32) (140) (3) (2900) (60)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80 0 80 500 999 300 1000 83 12 for 2 EE3 EE3 WIN	5V 10V 20mA 20mA 232 3-B (176) (176) (176) (176) (176) (176) (176) (176) (176) (176) (176) (176) (19999) (176) (19999) (10) (175) (10) (175) (10) (175) (10) (175) (10) (175) (10) (10) (10) (10) (10) (10) (10) (10	EE3: 100 120 100 100 1100 999 700 2800 2800 2800 2800 2800 2800 2800	(248) (212) (32) (212) (15) (9999) (300) (999999) typ. 40n typ. 80n Kx: 0.01 100bar (or later;	-1mA -1mA R _L < { R _L < { R _L < { 0 100 100 100 100 2800 A / 80 A / 80 A / 16 20ba 01450 serial	< $ _{L} < 1n$ < $ _{L} < 1n$ 500 Ohm 500 Ohm 500 Ohm al: RS48 3-D/E/I/J (356) (212) (32) (212) (32) (212) (300) (300) (99999) (300) (099999) (optional DmA 50mA ar (0.1530)	nA nA 35 or etherr 35 or etherr 7 7 100 (212) 0 (32) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	unit °C (°F °C (°F °C (°F °C (°F mbar (ps g/kg (gr/ g/m ³ (gr/ kJ/kg (lbf	
Digital interface c. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial press Mixture ratio Absolute humidity Specific enthalpy heral Supply voltage Current consumption Pressure range for press System requirements for Housing / protection cla	RHL T Td Tf Tw ure e r dv h - 2x vol - 2x cur ssure ti	from 0 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (-40) (-40) (-40) (0) (0) (0) (0) (0) (0) (0) (0) (0) (EE3 100 60 0 60 200 425 150 400	(140) (140) (32) (140) (3) (2900) (60)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 80 0 80 500 999 300 1000 83 12 for 2 EE3 EE3 WIN AI S	5V 10V 20mA 20mA 232 3-B (176)	EE3: 100 120 100 100 1100 999 700 2800 2800 2800 2800 2800 2800 2800	(248) (212) (32) (212) (15) (9999) (300) (999999) typ. 40n typ. 80n Kx: 0.01 100bar (t	-1mA -1mA R _L < { R _L < { R _L < { 0 100 100 100 100 100 2800 A / 80 A / 80 A / 16 20ba 01450 serial 4)	< I [< 1n < I [< 1n 500 Ohm 500 Ohm 500 Ohm al: RS48 3-D/E/I/J (356) (212) (32) (212) (32) (15) (320) (300) (9999) (300) (99999) (optional DmA 50mA ar (0.1530 psi) interface	nA nA 35 or etherr 35 or etherr 7 7 100 (212) 0 (32) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	unit °C (°F °C (°F °C (°F mbar (ps g/kg (gr/ g/m³ (gr/ kJ/kg (lbf	
Digital interface c. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial press Mixture ratio Absolute humidity Specific enthalpy heral Supply voltage Current consumption Pressure range for press System requirements for Housing / protection cla Cable gland	RHL T Td Tf Tw ure e r dv h - 2x vol - 2x cur ssure ti	from 0 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (-40) (-40) (-40) (0) (0) (0) (0) (0) (0) (0) (0) (0) (EE3 100 60 0 60 200 425 150 400	(140) (140) (32) (140) (3) (2900) (60)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 500 999 300 1000 82 for 2 EE3 EE3 WIN ALS M16	5V 10V 20mA 20mA 232 3-B (176) (176) (32) (176)	EE3: 100 120 100 100 1100 999 700 2800 2800 2800 2800 2800 2800 2800	(248) (212) (32) (15) (9999) (300) (999999) typ. 40n typ. 80n Kx: 0.01 100bar (or later; 5; (Nema	-1mA -1mA RL < RL < RL < RL < RL < RL < NL < RL < RL < NL < NL < RL < NL <	< I _L < 1n < I _L < 1n 500 Ohm 500 Ohm bal: RS48 3-D/E/I/J (356) (212) (32) (212) (32) (15) (9999) (300)) (999999) (optional DmA comA ar (0.1530 psi) interface	nA nA 35 or etherr 35 or etherr 7 7 100 (212) 0 (32) 7 7 7 100240V7 00psi) 9 - 10 mm (0	unit °C (°F °C (°F °C (°F mbar (ps g/kg (gr/ g/m ³ (gr/ kJ/kg (bf	
Digital interface A adjustable measured Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial press Mixture ratio Absolute humidity Specific enthalpy Peral Supply voltage Current consumption Pressure range for press System requirements for Housing / protection cla Cable gland Electrical connection	RHL T Td Td Tf Tw ure e r dv h - 2x vol - 2x cur ssure ti or softw ass	from 0 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2)3) (-40) (-40) (-40) (-40) (-40) (0) (0) (0) (0) (0) (0) (0) (EE3 100 60 0 60 200 425 150 400	33-A (140) (140) (32) (140) (3) (2900) (60) (50000)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 0 80 0 80 0 80 0 80 0 80 0 80 0 80 0 80 0 80 100 10	5V 10V 20mA 20mA 232 3-B (176) (176) (32) (176) (32) (176) (176) (32) (176) (176) (32) (176) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176)	EE3: 100 120 100 100 1100 999 700 2800 2800 /AC: Ex/Jx/I x: 0 2000 3 / IP6 nals u	(248) (212) (32) (212) (15) (9999) (300) (999999) typ. 40n typ. 80n Kx: 0.01 100bar (or later; 55; (Nema	-1mA -1mA RL < RL < RL < RL < RL < RL < NL < RL < RL < NL < NL < RL < NL <	< I [< 1n < I [< 1n 500 Ohm 500 Ohm 500 Ohm al: RS48 3-D/E/I/J (356) (212) (32) (212) (32) (15) (320) (300) (9999) (300) (99999) (optional DmA 50mA ar (0.1530 psi) interface	nA nA 35 or etherr 35 or etherr 7 7 100 (212) 0 (32) 7 7 7 100240V7 00psi) 9 - 10 mm (0	unit °C (°F °C (°F °C (°F mbar (ps g/kg (gr/ g/m³ (gr/ kJ/kg (lbf	
Digital interface A adjustable measured Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial press Mixture ratio Absolute humidity Specific enthalpy heral Supply voltage Current consumption Pressure range for press System requirements for Housing / protection cla Cable gland	RHL T Td Td Tf Tw ure e r dv h - 2x vol - 2x cur ssure ti or softw ass	from 0 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2)3) (-40) (-40) (-40) (-40) (-40) (0) (0) (0) (0) (0) (0) (0) (EE3 100 60 0 60 200 425 150 400	33-A (140) (140) (32) (140) (3) (2900) (60) (50000)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 500 999 300 1000 82 for 2 EE3 EE3 WIN AI S M16 Scree -40.	5V 10V 20mA 20mA 232 3-B (176) (176) (32) (176) (32) (176) (32) (176) (176) (32) (176) (176) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176	EE3: 100 120 100 100 1100 999 700 2800 2800 /AC: Ex/Jx/I x: 0 2000 3 / IP6 nals u -4014	(248) (212) (32) (212) (15) (9999) (300) (999999) typ. 40n typ. 80n Kx: 0.01 100bar (i or later; 55; (Nema ip to ma: 0°F)	-1mA -1mA R _L < R _L < R _L < 0 100 100 100 100 100 100 2800 A / 80 A / 80 A / 80 A / 16 20ba 01450 serial 4) cab x. 1.5n	< $I_{L} < 1n$ < $I_{L} < 1n$ 500 Ohm 500 Ohm 500 Ohm 500 Ohm al: RS48 3-D/E/I/J (356) (212) (32) (212) (32) (212) (30) (9999) (09999) (099999) (optional 0mA 5	nA nA 35 or etherr 35 or etherr 7 7 100 (212) 0 (32) 7 7 7 7 100240V7 00psi) 2 - 10 mm (0 i 16)	unit °C (°F °C (°F °C (°F mbar (ps g/kg (gr/ g/m³ (gr/ kJ/kg (lbf	
Digital interface X. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial press Mixture ratio Absolute humidity Specific enthalpy neral Supply voltage Current consumption Pressure range for press System requirements for Housing / protection cla Cable gland Electrical connection Working and storage te	RHL T Td Tf Tw ure e r dv h - 2x vol - 2x cur ssure ti or softw ass	ange from 0 -40 -40 0 0 0 0 0 0 tage o rent o ght pro /are	2)3) (-40) (-40) (-40) (-40) (-40) (-40) (0) (0) (0) (0) (0) (0) (0) (EE3 100 60 0 425 150 400	33-A (140) (140) (32) (140) (3) (2900) (60) (50000)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 500 999 300 1000 83 12 for 2 EE3 EE3 WIN AI S M16 Scree -40. -20.	5V 10V 20mA 20mA 232 3-B (176) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176	EE3: 100 120 100 100 100 1100 999 700 2800 2800 2800 2800 2800 2800 2800	(248) (212) (32) (15) (9999) (300) (999999) (99999) (999999) (999999) (999999) (99999) (99999) (999999) (999999) (999999) (99999) (999999) (999999) (9999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (9999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (9999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (9999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (9999) (9999) (99999) (99999) (99999) (99999) (999) (9999) (9999) (999) (9999) (9999) (9999) (99)	-1mA -1mA RL < % RL < % option EE3: 100 100 100 100 100 2800 mA / 80 mA / 80 mA / 80 mA / 10 20ba 01450 serial 4) cab x. 1.5m using w	< $I_{L} < 1n$ < $I_{L} < 1n$ 500 Ohm 500 Ohm 500 Ohm 500 Ohm 500 Ohm 500 Ohm 500 Ohm 500 Ohm (32) (32) (212) (32) (212) (32) (32) (30) (9999) (09999) (099999) (00000000 (0000000000000000000000000	nA nA 35 or etherr 35 or etherr 7 7 100 (212) 0 (32) 7 7 7 7 100240V7 00psi) 2 - 10 mm (0 i 16) ay	unit % rF °C (°F °C (°F mbar (ps g/kg (gr/ g/m³ (gr/ kJ/kg (lbf AC, 50/60H	
Digital interface X. adjustable measure Humidity Temperature Dew point temperature Frost point temperature Wet bulb temperature Water vapour partial pressu Mixture ratio Absolute humidity Specific enthalpy neral Supply voltage Current consumption Pressure range for pressive System requirements for Housing / protection cla Cable gland Electrical connection	RHL T Td Tf Tw ure e r dv h - 2x vol - 2x cur ssure ti or softw ass	ange from 0 -40 -40 0 0 0 0 0 0 tage o rent o ght pro /are	2)3) (-40) (-40) (-40) (-40) (-40) (-40) (0) (0) (0) (0) (0) (0) (0) (EE3 100 60 0 425 150 400	33-A (140) (140) (32) (140) (3) (2900) (60) (50000)	0 - 4 0 - 2 4 - 2 0 - 2 RS2 EE3 100 80 500 999 300 1000 82 for 2 EE3 EE3 WIN AI S M16 Scree -40. -20. EN6	5V 10V 20mA 20mA 232 3-B (176) (176) (32) (176) (32) (176) (32) (176) (176) (32) (176) (176) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176) (32) (176	EE3: 100 120 100 100 1100 999 700 2800 2800 2800 2800 2800 2800 2800	(248) (212) (32) (15) (9999) (300) (999999) (99999) (99999) (999999) (99999) (999999) (999999) (999999) (999999) (9999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (999999) (999999) (999999) (999999) (999999) (999999) (99999) (999999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (99999) (9999) (9999) (9999) (99999) (99999) (99999) (99999) (99999) (999) (9999) (9999) (9999) (99) (99)	-1mA -1mA RL < % RL < % option EE3: 100 100 100 100 100 2800 mA / 80 mA / 80 mA / 80 mA / 10 20ba 01450 serial 4) cab x. 1.5m using w	< IL < 1n < IL < 1n 500 Ohm 500 Ohm bal: RS48 3-D/E/I/J (356) (212) (32) (212) (32) (212) (30) (9999) (300) (99999) (300) (99999) (0ptional 0mA comA car (0.153(psi) interface ole Ø 4.5 nm² (AWG Vith displa ICES	nA nA 35 or etherr 35 or etherr 7 7 100 (212) 0 (32) 7 7 7 7 100240V7 00psi) 2 - 10 mm (0 i 16)	Unit % rF °C (°F °C (°F mbar (ps g/kg (gr/ g/m ³ (gr/ kJ/kg (lbf AC, 50/60H	

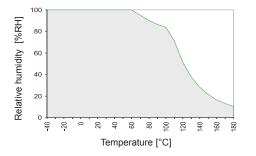
1) Refer to the working range of the humidity sensor. 2) Can be easily changed by software. 3) refer to documents on carculated values (refer to accuracy statement includes the uncertainty of the factory calibration with an enhancement factor k=2 (2-times standard deviation). The accuracy was calculated in accordance with EA-4/02 and with regard to GUM (Guide to the Expression of Uncertainty in Measurement).

Technical Data EE32_____

Measurement values

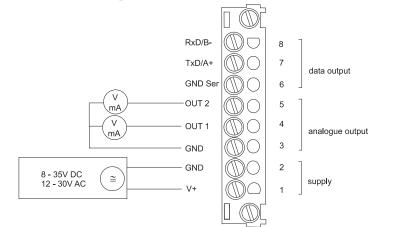
Relative humidity	y						
Humidity sensor ¹⁾			heated, m	nonolithic m	easurement	cell HMC1	
Working range ¹⁾			0100%				
Accuracy ^{*)} (including l	nysteresis, non-lineari	ty and repeatab	lity, traceable	to intern. sta	indards, admi	nistrated by NIST,	PTB, BEV.
-1540°C (5.	104°F)≤ 90% RH	l	± (1.3 + 0).3%*mv) %	RH		
-1540°C (5.	104°F) >90% RH	l	± 2.3% R	H			
-2570°C (-1	3158°F)		± (1.4 + 1	l%*mv) % F	RH		
40180°C (-	40356°F)		± (1.5 + 1	l.5%*mv) %	RH		
Temperature depen	dence of electronics	;			0.0055% RH/°F)	
Response time with I	metal grid filter at 20°	C (68°F) / t ₉₀	< 15s				
Temperature	-						
Temperature sensor	element		monolithio	c measuren	nent cell HM	C1	
Working range sens		EE32-MFTA: EE32-MFTC:	-4060°C (-4	l0140°F)	EE32-MF		С (-40176)°С (-4035
Accuracy			С 0.6 Т				
			0.5 -				
			0.4 —				
			0.3				
			0.1 -				
			0 -40 -30 -20 -10	0 10 20 30 40 50	60 70 80 90 100 110	120 130 140 150 160 170 180 °C	
			-0.1 -				
			-0.3				
			-0.4 —				
			-0.5				
Temperature depen External temperatur		5	typ. ± 0.0 Pt1000 (E				
External temperatur	e probe				-1mA <	: I. < 1mA	
External temperatur	e probe		Pt1000 (E 0 - 1V			: I _L < 1mA : I _L < 1mA	
External temperatur	e probe		Pt1000 (E 0 - 1V 0 - 5V		-1mA <	: I _L < 1mA	
External temperatur	e probe		Pt1000 (E 0 - 1V	DIN A)	-1mA < -1mA <	: I _L < 1mA : I _L < 1mA	
External temperatur	e probe		Pt1000 (E 0 - 1V 0 - 5V 0 - 10V	DIN A)	-1mA < -1mA < R _L < 50	: I _L < 1mA : I _L < 1mA)0 Ohm	
External temperatur puts ²⁾ Two freely selectable	e probe		Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA	DIN A)	-1mA < -1mA < R _L < 50	: I _L < 1mA : I _L < 1mA	
External temperatur	e probe	gue outputs	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA	DIN A)	-1mA < -1mA < R _L < 50 R _L < 50	: I _L < 1mA : I _L < 1mA)0 Ohm	
External temperatur puts ²⁾ Two freely selectable	e probe		Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA	DIN A)	-1mA < -1mA < R _L < 50 R _L < 50	: I _L < 1mA I _L < 1mA 00 Ohm 00 Ohm	unit
External temperatur puts ²⁾ Two freely selectable . adjustable measu	e probe and scaleable analo rement range ²⁾³⁾	gue outputs	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA	DIN A)	-1mA < -1mA < R _L < 50 R _L < 50 to EE32-C	: I _L < 1mA : I _L < 1mA 00 Ohm 00 Ohm	
External temperatur puts ²⁾ Two freely selectable . adjustable measu Humidity	e probe	from	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA EE32-A 100	DIN A) EE32-B 100	-1mA < -1mA < R _L < 50 R _L < 50 to EE32-C 100	: I _L < 1mA : I _L < 1mA 00 Ohm 00 Ohm EE32-D/E/I/J 100	% RI
External temperatur puts ²⁾ Two freely selectable . adjustable measu	e probe and scaleable analo rement range ²⁾³⁾	gue outputs	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA	DIN A)	-1mA < -1mA < R _L < 50 R _L < 50 to EE32-C	: I _L < 1mA : I _L < 1mA 00 Ohm 00 Ohm	
External temperatur puts ²⁾ Two freely selectable . adjustable measu Humidity Temperature eral	e probe and scaleable analo rement range ²⁾³⁾	from	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA EE32-A 100 60 (140)	EE32-B 100 80	-1mA < -1mA < R _L < 50 R _L < 50 to EE32-C 100	: I _L < 1mA : I _L < 1mA 00 Ohm 00 Ohm EE32-D/E/I/J 100	% RI
External temperatur puts ²⁾ Two freely selectable . adjustable measu Humidity Temperature	e probe and scaleable analo rement range ²⁾³⁾	from	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA EE32-A 100 60 (140) 835V D	EE32-B 100 80	-1mA < -1mA < R _L < 50 R _L < 50 to EE32-C 100 120 (248)	: I _L < 1mA : I _L < 1mA 00 Ohm 00 Ohm EE32-D/E/I/J 100 180 (356)	% RI °C
External temperatur puts ²⁾ Two freely selectable . adjustable measu Humidity Temperature eral	e probe and scaleable analo rement range ²⁾³⁾	from	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA EE32-A 100 60 (140) 835V D 1230V /	EE32-B 100 80 C AC	-1mA < -1mA < R _L < 50 R _L < 50 to EE32-C 100 120 (248)	: I _L < 1mA : I _L < 1mA 00 Ohm 00 Ohm EE32-D/E/I/J 100 180 (356) optional 100240V	% RI °C
External temperatur puts ²⁾ Two freely selectable . adjustable measu Humidity Temperature eral	e probe and scaleable analo rement range ²⁾³⁾ RH T	from 0 -40 (-40)	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA EE32-A 100 60 (140) 835V D 1230V /	EE32-B 100 80 C AC DC/AC: typ	-1mA < -1mA < R _L < 50 R _L < 50 to EE32-C 100 120 (248)	: I _L < 1mA : I _L < 1mA 00 Ohm 00 Ohm ====================================	% RI °C
External temperatur puts ²⁾ Two freely selectable adjustable measu Humidity Temperature eral Supply voltage	e probe and scaleable analo rement range ²⁾³⁾ RH T n - 2x voltage outp - 2x current outpu	from 0 -40 (-40)	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA EE32-A 100 60 (140) 835V D 1230V / for 24V D	EE32-B 100 80 C AC DC/AC: typ typ	-1mA < -1mA < R _L < 50 R _L < 50 to EE32-C 100 120 (248) (. 40mA / 80m	: I _L < 1mA : I _L < 1mA 00 Ohm 00 Ohm 100 180 (356) 0ptional 100240V nA	% Rł °C
External temperatur puts ²⁾ Two freely selectable adjustable measu Humidity Temperature eral Supply voltage Current consumptio	e probe and scaleable analo rement range ²⁾³⁾ RH T n - 2x voltage outp - 2x current outpu	from 0 -40 (-40)	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA EE32-A 100 60 (140) 835V D 1230V / for 24V D EE32-MF	EE32-B 100 80 C AC DC/AC: typ typ TEx/Jx: 0.0	-1mA < -1mA < R _L < 50 R _L < 50 to EE32-C 100 120 (248) (. 40mA / 80m . 80mA / 160 120bar (0.1	: I _L < 1mA : I _L < 1mA 00 Ohm 00 Ohm EE32-D/E/I/J 100 180 (356) optional 100240V nA 0mA 5300psi)	% Rł °C
External temperatur puts ²⁾ Two freely selectable adjustable measu Humidity Temperature eral Supply voltage Current consumptio	e probe and scaleable analo rement range ²⁾³⁾ RH T n - 2x voltage outp - 2x current outpu pressure tight probe	from 0 -40 (-40)	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA EE32-A 100 60 (140) 835V D 1230V / for 24V D EE32-MF EE32-MF	EE32-B 100 80 C AC DC/AC: typ typ TEx/Jx: 0.0 TIx: 0100	-1mA < -1mA < R _L < 50 R _L < 50 to EE32-C 100 120 (248) (. 40mA / 80m . 80mA / 160	: I _L < 1mA : I _L < 1mA D0 Ohm D0 Ohm EE32-D/E/I/J 100 180 (356) optional 100240V nA JmA 5300psi) si)	% RI °C
External temperatur puts ²⁾ Two freely selectable adjustable measu Humidity Temperature eral Supply voltage Current consumptio Pressure range for System requiremen	e probe and scaleable analo rement range ²⁾³⁾ RH T n - 2x voltage outp - 2x current outporessure tight probe ts for software	from 0 -40 (-40)	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA EE32-A 100 60 (140) 835V D 1230V / for 24V D EE32-MF EE32-MF EE32-MF	EE32-B 100 80 C AC DC/AC: typ typ TEx/Jx: 0.0 TIx: 0100	-1mA < -1mA < RL < 50 EE32-C 100 120 (248) (. 40mA / 80n 20bar (0.1 bar (01450ps ater; serial in	: I _L < 1mA : I _L < 1mA D0 Ohm D0 Ohm EE32-D/E/I/J 100 180 (356) optional 100240V nA JmA 5300psi) si)	% RI °C
External temperatur puts ²⁾ Two freely selectable adjustable measu Humidity Temperature eral Supply voltage Current consumptio Pressure range for System requirement Housing / protectior	e probe and scaleable analo rement range ²⁾³⁾ RH T n - 2x voltage outp - 2x current outporessure tight probe ts for software	from 0 -40 (-40)	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA EE32-A 100 60 (140) 835V D 1230V / for 24V D EE32-MF EE32-MF EE32-MF EE32-MF	EE32-B 100 80 C AC DC/AC: typ typ TEx/Jx: 0.0 TIx: 0100 /S 2000 or 1 u 3 / IP65; (-1mA < -1mA < R _L < 50 EE32-C 100 120 (248) (120bar (0.1 bar (01450ps ater; serial in Nema 4)	: I _L < 1mA : I _L < 1mA D0 Ohm D0 Ohm D0 Ohm EE32-D/E/I/J 100 180 (356) optional 100240V nA 5300psi) ii) hterface	% RI °C
External temperatur puts ²⁾ Two freely selectable adjustable measu Humidity Temperature eral Supply voltage Current consumptio Pressure range for System requirement Housing / protection Cable gland	e probe and scaleable analo rement range ²⁾³⁾ RH T n - 2x voltage outp - 2x current outproressure tight probe ts for software class	from 0 -40 (-40)	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA EE32-A 100 60 (140) 835V D 1230V // for 24V D EE32-MF EE32-MF EE32-MF WINDOW AI Si 9 Cu M16 x 1.5	EE32-B 100 80 C AC DC/AC: typ TEx/Jx: 0.0 TIx: 0100 /S 2000 or 1 u 3 / IP65; (5	-1mA < -1mA < R _L < 50 R _L < 50 to EE32-C 100 120 (248) (0. . 40mA / 80m . 80mA / 160 120bar (0.1 bar (01450ps ater; serial in Nema 4) cable	: I _L < 1mA : I _L < 1mA 20 Ohm 20 Ohm 2	% RI °C
External temperatur puts ²⁾ Two freely selectable adjustable measu Humidity Temperature eral Supply voltage Current consumptio Pressure range for System requirement Housing / protection Cable gland Electrical connection	e probe and scaleable analo rement range ²⁾³⁾ RH T n - 2x voltage outp - 2x current outpr pressure tight probe ts for software class	from 0 -40 (-40)	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA EE32-A 100 60 (140) 835V D 1230V // for 24V D EE32-MF EE32-MF EE32-MF WINDOW AI Si 9 Cu M16 x 1.5 screw terr	EE32-B 100 80 C AC DC/AC: typ TEx/Jx: 0.0 TIx: 0100 /S 2000 or 1 u 3 / IP65; (5 minals up to	-1mA < -1mA < R _L < 50 R _L < 50 to EE32-C 100 120 (248) (0.1 80mA / 160 120bar (0.1 bar (01450ps later; serial in Nema 4) cable p max. 1.5mr	: I _L < 1mA : I _L < 1mA 20 Ohm 20 Ohm 2	% Rł °C
External temperatur puts ²⁾ Two freely selectable adjustable measu Humidity Temperature eral Supply voltage Current consumptio Pressure range for System requirement Housing / protection Cable gland	e probe and scaleable analo rement range ²⁾³⁾ RH T n - 2x voltage outp - 2x current outpr pressure tight probe ts for software class	from 0 -40 (-40)	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA EE32-A 100 60 (140) 835V D 1230V // for 24V D EE32-MF EE32-MF WINDOW AI Si 9 Cu M16 x 1.5 screw terr -4060°C	EE32-B 100 80 C AC DC/AC: typ typ TEx/Jx: 0.0 TIx: 0100 /S 2000 or 1 u 3 / IP65; (5 minals up to C (-40140°F)	-1mA < -1mA < R _L < 50 R _L < 50 to EE32-C 100 120 (248) (0.1 &0mA / 80mA / 160 120bar (0.1 bar (01450ps later; serial ir Nema 4) cable o max. 1.5mr	: I _L < 1mA : I _L < 1mA 20 Ohm 20	% RH °C
External temperatur puts ²⁾ Two freely selectable adjustable measu Humidity Temperature eral Supply voltage Current consumptio Pressure range for System requirement Housing / protection Cable gland Electrical connection	e probe and scaleable analo rement range ²⁾³⁾ RH T n - 2x voltage outp - 2x current outporessure tight probe ts for software class n e temperature range	from 0 -40 (-40) ut ut ut e of electronics	Pt1000 (E 0 - 1V 0 - 5V 0 - 10V 4 - 20mA 0 - 20mA EE32-A 100 60 (140) 835V D 1230V // for 24V D EE32-MF EE32-MF WINDOW AI Si 9 Cu M16 x 1.5 screw terr -4060°C	EE32-B 100 80 C AC C/AC: typ typ TEx/Jx: 0.0 TIx: 0100 /S 2000 or 1 u 3 / IP65; (5 minals up to C (-40140°F) C (-4122°F)	-1mA < -1mA < R _L < 50 R _L < 50 to EE32-C 100 120 (248) (0.1 80mA / 160 120bar (0.1 bar (01450ps later; serial in Nema 4) cable p max. 1.5mr	: I _L < 1mA : I _L < 1mA 20 Ohm 20	% RH °C AC, 50/60

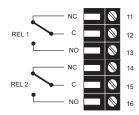
 1) Refer to the working range of the humidity sensor.
 2) Can be easily changed by software.
 3) Refer to accuracies of calculated values


 *) The accuracy statement includes the uncertainty of the factory calibration with an enhancement factor k=2 (2-times standard deviation). The accuracy was calculated in accordance with EA-4/02 and with regard to GUM (Guide to the Expression of Uncertainty in Measurement).

Technical Data for Options

Display	graphical LC display (128x32 pixels parameters and MIN/MAX function	s), with integrated push-but	ttons for selecti
Alarm outputs	2 x 1 switch contact 250V AC / 6A 28V DC / 6A threshold + hysteresis: can be adjuste switching parameters:	ed with configuration softwar	e
	freely selectable between	EE32-MFTA/B/D/E/I/J	EE32-MFTK
	RH Relative humidity	\checkmark	
	T Temperature	\checkmark	
	Td Dew point temperature	✓ (EE33 only)	\checkmark
	Tf Frost point temperature	✓ (EE33 only)	\checkmark
	Tw Wet bulb temperature	✓ (EE33 only)	
	e Water vapour partial pressure	✓ (EE33 only)	
	r Mixture ratio	✓ (EE33 only)	
	dv Absolute humidity	✓ (EE33 only)	
	h Specific enthalpy	✓ (EE33 only)	


Working Range Humidity Sensor_


The grey area shows the allowed measurement range for the humidity sensor.

Operating points outside of this range do not lead to destruction of the sensor, but the specified measurement accuracy cannot be guaranteed.

Connection Diagram

Terminal configuration - Alarm output (order code SW)

Accessories / Replacement Parts (For further information, see data sheet "Accessories", page 138) _

- Filter caps
- (HA0101xx) (D05M)
- Display + housing cover - Interface cable for PCB (HA010304)
- Interface cable for plug C06
- (HA010311) - 1/2" NPT-adapter for configuration (HA011101)
- Mounting flange 12mm (RH probe)(HA010201)
- Mounting flange 6mm (T probe) Adapter M16x1.5 to NPT ½" (HA010207)
- (HA011101)

EE33 only:

- RS485 Kit (HW + SW) for networking (HA010601)
- Data logging / analysis software (HA010602)

 Drip water protection 	(HA010503)
- 1% Calibration	(EE90/3H)
 Calibration set 	(HA0104xx)
- Pressure tight screw connection	ons
1/2" ISO Ø12mm	(HA011102)
1/2" NPT ∅12mm	(HA011103)
1/2" ISO ∅6mm	(HA011104)
1/2" NPT∅6mm	(HA011105)

Ordering Guide EE33_

Hardware Configur	ation				2200-			EE33-	2200-			2200
Housing	metal housing				м	м	м	м	м	м	м	м
Type	humidity + temperature				FT	FT	FT	FT	FT	FT	FT	FT
	numicity - temperature					В	c	D	E		J	ĸ
Model	DTCC ataiplage steal filter				Α	в	L C		E	<u> </u>	2	Ň
Filter	PTFE stainless steel filter				2	2	3				2	
	stainless steel sintered filte PTFE filter	51			3 5	3 5	5	3	3	3		
		a 190°C (area)			9 9	9 9	9	9	9	9	9	9
Cabla langth	stainless steel grid filter (up t	0 160 C / 356°F)			9	9	9 02	02	02	02	02	02
Cable length	2m (6.6ft)						02	02	02	02	02	02
(incl. probe length)	5m (16.4ft) 10m (32.8ft)						10	10	10	10	10	10
	20m (65.6ft)						20	20	20	20	20	20
Probe length	65mm (2.6") (for model E: 80	0mm (2.1"))					20	20	20	20	20	20
i iobe leligili	200mm (7.9")	omm (3.1.))				5	5	5	5	5	5	5
	400mm (15.8")					6	6	6	6	ľ	l v	6
Pressure tight	1/2" male thread					•	–	– –	HA03	HA03		- V
feedthrough	1/2" NPT thread								HA07			
Interface	RS232								11/10/			
Internate	RS485				N	N	N	N	N	N	N	N
	ethernet interface ¹⁾				Ē	Ē	Ē	Ē	Ē	Ë	Ē	Ē
Display	without display				-	-	-	-	-	<u> </u>	-	<u> </u>
	with display				D05	D05	D05	D05	D05	D05	D05	D05
Alarm output ²⁾	without relay				200	200	200	- 200	- 200	- 200	- 200	
, in the second	with relay				sw	SW	sw	sw	sw	sw	sw	sw
Plug	cable glands											
	1 plug for power supply an	d outputs			C03	C03	C03	C03	C03	C03	C03	C03
	1 cable gland / 1 plug for F				C06	C06	C06	C06	C06	C06	C06	C06
	2 plugs for power supply /		485 network		C08	C08	C08	C08	C08	C08	C08	C08
Sensing probe	fixed											
51	connectable in the housing	1					P03	P03	P03	P03	P03	P03
Coating sensor	no	,										
0	yes				HC01	HC01	HC01	HC01	HC01	HC01	HC01	HC0 [,]
Supply voltage	835V DC / 1230V AC											
	integrated power supply 10	00240V AC, 50	/60Hz ³⁾		V01	V01	V01	V01	V01	V01	V01	V01
										· · · · ·		_
Software Configura	ation											
Physical	Relative humidity	RH [%]	(A)	Output 1	Selec	t acco	rding t	o Orde	ring Gւ	uide (A	- J)	С
parameters of	Temperature	T [°C]	(B)		<u> </u>							
outputs	Dew point temperature	Td [°C]	(C)	Output 2	Selec	t acco	rdina t	o Orde	rina Gu	uide (A	- J)	D
	Frost point temperature	Tf [°C]	(D)						9		- /	
	Wet bulb temperature	Tw [°C]	(E)									
	Water vapour partial pres.	e [mbar]	(F)									
	Mixture ratio	r [g/kg]	(G)									
	Absolute humidity	dv [g/m ³]	(H)									
	Specific enthalphy	h [kJ/kg]	(J)									
Type of	0-1V	r1	(-)		1	1	1	1	1	1	1	1
output signal	0-5V				2	2	2	2	2	2	2	2
output signal	0-10V				3	3	3	3	3	3	3	3
	0-20mA				5	5	5	5	5	5	5	5
	4-20mA					6	6	6			6	6
Measured value units					6	0	0	0	6	6	0	0
weasureu value units	metric / SI non metric / US				E01	E01	E01	E01	E01	E01	E01	E01
T-Scaling		-20100	(T14)	Output T								201
Td-Scaling		+20120	(T14) (T15)		50100	a acco	nung t	o Orde	nng Gl	nde (1)	(X)	
-	· · · · ·				Cala		rdin	0.0	rine O	uide (T	dara'	
Tf-Scaling Tw-Scaling	050 (T04)	0120	(T16) (T21)	Output Td	Selec	acco	raing t	o Orde	ring Gi	nae (1	ixx)	
(in °C or °F)	0100 (T05)	080	(T21) (T22)		C-1		nalles et d	- 0t-	dan o	side (T)		
	060 (T07) 30 70 (T08)	-4080	(T22) (T24)	Output Tf	Selec	acco	raing t	o Orde	ring Gi	nae (11	XX)	
	-3070 (T08)	-2080	(T24) (T22)	Outout T			autor e					
	-30120 (T09)	-40160	(T33) (T40)	Output Tw	Selec	ct acco	rding t	o Orde	ring Gi	ude (T	vxx)	
	-20120 (T10)	+20180	(T40) (T52)		Othe	, т/т <i>а</i> (Tf/Tw -	caline	rofor to		146	
	-40120 (T12)	-40180	(T52)			1 1/1 Cl/	11/1W-S	caling	rerer to	v page	140	

1) Combination ethernet and alarm output is not possible / combination ethernet and integrated power supply is not possible 2) Combination alarm output and plugs is not possible (with cable glands only) / combination alarm output and integrated power supply is not possible 3) Integrated power supply includes 2 plugs for power supply and outputs / further plug options are not possible

Order Example_

EE33-MFTD5025ND05SW/BC3-T02-Td07

Hardware C	onfiguration:
Housing:	metal
Туре:	humidity + temperature
Model:	remote sensing probe
Filter:	PTFE filter
Cable length:	2m (6.6ft)
Probe length:	200mm (7.9")
Interface:	RS485

Display: Alarm output: Plug:

with display with relay cable glands Sensing probe: fixed Coating sensor: no Supply voltage: 8...35V DC / 12...30V AC

Software Configuration:

Output 1:	Т
Output 2:	Td
Output signal:	0-10V
Measurand value unit:	metric / SI
T-Scaling:	-4060°C
Td-Scaling:	060°C

EE33

7

Ordering Guide EE32

					EE32-	EE32-	EE32-	EE32-	EE32-	EE32-	EE32-
Hardware Configura	ation										
Housing	metal housing				М	М	м	м	м	м	М
Туре	humidity + temperatur	e			FT	FT	FT	FT	FT	FT	FT
Model					Α	в	С	D	E	1	J
Filter	PTFE stainless steel f	ilter									2
	stainless steel sintere	d filter			3	3	3	3	3	3	
	PTFE filter				5	5	5	5	5	5	
	stainless steel grid filte	er (up to 180°C / 356°F)		9	9	9	9	9	9	9
Cable length	2m (6.6ft)						02	02	02	02	02
(incl. probe length)	5m (16.4ft)						05	05	05	05	05
	10m (32.8ft)						10	10	10	10	10
	20m (65.6ft)						20	20	20	20	20
Probe length	65mm (2.6") (for model	E: 80mm (3.1"))					2	2	2		
	200mm (7.9")					5	5	5	5	5	5
	400mm (15.8")					6	6	6	6		
Pressure tight	1/2" male thread								HA03	HA03	
feedthrough	1/2" NPT thread								HA07	HA07	
Display	without display										
	with display				D05	D05	D05	D05	D05	D05	D05
Alarm output ¹⁾	without relay										
	with relay				SW	SW	SW	SW	SW	SW	SW
Plug	cable glands										
	1 plug for power supp	ly and outputs			C03	C03	C03	C03	C03	C03	C03
	1 cable gland / 1 plug	for RS232			C06	C06	C06	C06	C06	C06	C06
Sensing probe	fixed										
	connectable in the ho	using					P03	P03	P03	P03	P03
Coating sensor	no										
	yes				HC01	HC01	HC01	HC01	HC01	HC01	HC01
Supply voltage	835V DC / 1230V										
	integrated power supp	bly 100240V AC, 50/	60Hz ²⁷		V01	V01	V01	V01	V01	V01	V01
Software Configura											
Physical parameters	relative humidity	RH [%]	(A)	Output 1			rding to				
of outputs	temperature	T [°C]	(B)	Output 2	Sel	ect acc	ording	to Ord	ering G	uide (/	A or B)
Type of	0-1V				1	1	1	1	1	1	1
output signal	0-5V				2	2	2	2	2	2	2
	0-10V				3	3	3	3	3	3	3
	0-20mA				5	5	5	5	5	5	5
	4-20mA				6	6	6	6	6	6	6
Measured value units	metric / SI										
	non metric / US				E01	E01	E01	E01	E01	E01	E01
T-Scaling	-4060 (T02)	-20100	(T14)	Output T	Selec	t acco	rding to	o Ordei	ring Gu	ide (T)	(X)
(in °C or °F)	-1050 (T03)	+20120	(T15)				-		-		
	050 (T04)	0120	(T16)		Othe	r T-sca	ling ref	er to p	age 14	6	
	0100 (T05)	080	(T21)				-				
	060 (T07)	-4080	(T22)								
	-3070 (T08)	-2080	(T24)								
	-30120 (T09)	-40160	(T33)								
	-20120 (T10)	+20180	(T40)								
	-40120 (T12)	-40180	(T52)								

1) Combination alarm output and plugs is not possible (with cable glands only) / combination alarm output and integrated supply voltage is not possible 2) Integrated power supply includes 2 plugs for power supply and outputs / further plug options are not possible

Order Example

EE32-MFTJ9025D05SW/AB3-T02

Hardware Configuration:

Housing:	metal	Display:	with display
Туре:	humidity + temperature	Alarm output:	with relay
Model:	remote sensing probe	Plug:	cable glands
Filter:	stainless steel grid filter	Sensing probe:	fixed
Cable length:	2m (6.6ft)	Coating sensor:	
Probe length:	200mm (7.9")	Supply voltage:	835V DC / 1230V AC

Accessories:

Pressure tight screw connections:

HA011102 (1/2" ISO Ø12mm) HA011104 (1/2" ISO Ø6mm)

Software Configuration:

Output 1:	RH
Output 2:	Т
Output signal:	0-10V
Measurand value unit:	metric / SI
T-Scaling:	-4060°C

EE29/EE31 Series

Multifunctional Industrial Transmitter for Humidity / Temperature / Dew Point / Absolute Humidity...

The precise and reliable measurement of humidity in industrial processes is gaining more and more importance. The multifunctional transmitters series EE29/31 offer the ideal solution.

The result of many years of experience in humidity measurement technology for industrial applications, the EE29/31 series builds on the E+E high-quality HC series capacitive humidity sensor elements.

The optimal hardware structure for varying applications is achieved by combining various standard mechanical and electronic modules. User friendly MS Windows software tools simplify the configuration of the transmitter, the data recording, visualization and processing.

The measured values are available on two freely configurable and scaleable analogue outputs and on the serial RS232 interface. With an optional RS485 module or Ethernet module up to 32 EE31 transmitters can be connected to a network and one single PC interface allowing easy remote monitoring.

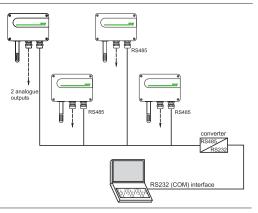
Two freely configurable optional alarm outputs can be set by software. The measured data and the corresponding MIN/MAX values can be viewed on the optional LC display.

Other features especially tailored for harsh industrial applications are the new housing concept consisting of three modules, the easy on-site adjustment and calibration, and the interchangeable sensor option. These features allow for very fast and easy servicing of the transmitter.

By selecting a suitable housing version the EE29/EE31 series can be used for the entire range of humidity measurement applications:

- Model A for wall mounting
- Model B for duct mounting
- Model D with remote sensing probe for measurements in the extended temperature range -40...180°C (-40...356°F).
- Model E with remote sensing probe for pressure tight applications between 0.01...20 bar (0.15...300psi).
- Model H (EE31 only) with remote miniature probe for concealed mounting (e.g. in museums) or in tight spaces.

Product comparison EE29 - EE31_


Functions	Comment	EE29	EE31
Measurement of relative humidity and temperature		\checkmark	\checkmark
two freely scaleable and configurable analogue outputs		\checkmark	\checkmark
Remote miniature probe			\checkmark
Remote sensing probe up to 20m (65.6ft)		\checkmark	\checkmark
On-site adjustment for relative humidity and temperature		\checkmark	\checkmark
LED indication of transmitter status		\checkmark	\checkmark
RS232 for transmitter configuration via PC		\checkmark	\checkmark
Configuration software	standard supply	\checkmark	\checkmark
Alternating display with MIN/MAX indication	optional	\checkmark	\checkmark
two freely configurable alarm outputs	optional	\checkmark	\checkmark
Interchangeable sensor cable	optional	\checkmark	\checkmark
Sensor protection (coating)	optional	\checkmark	\checkmark
Plug connection	optional	\checkmark	\checkmark
Calculated values h, r, dv, Tw, Td, Tf, e	•		\checkmark
Digital data output via RS232 interface			\checkmark
Digital data output via RS485 interface	optional		\checkmark
Network of up to 32 instruments via RS485 bus	optional		\checkmark
Ethernet interface for networking and remote monitoring	optional		\checkmark
Data logging and analysis PC software	optional		\checkmark

EE31 - Network with up to 32 transmitters_

Up to 32 EE31 transmitters can be connected in a RS-485 bus system to a single PC interface.

The measured and calculated data is stored in a PC database which is available for further processing by using the E+E data-logging and analysis software.

The data base can also be stored in ASCII format or in a database with ODBC interface.

EE31 - Ethernet interface_

EE31 transmitters can be connected through a standard Ethernet-port for easy remote monitoring (ordering code E). The software-tools are in the standard scope of supply.

10 CC 21 Mar

Lowest Value

€ SI € US

Software Tools_

The following software tools are available for the EE29/31 series: EE29 EE31	Date Schulture Second Date Schulture Second Dir Dir Second Second Second Dir Detellamicht Archiv Second The Reaching The Reaching
Configuration Software (standard supply) \checkmark \checkmark datalogging and analysis Software (optional) \checkmark	Reset 2 Kenet
 Configuration Software: The Configuration Software is used for: flexible, easy and fast setup of the analogue and alarm outputs. adjustment of the humidity and temperature outputs. exchange of the sensing probe or of the sensors. 	EE2DFE31 Configuration The Interfaces group Transition The Interfaces group Transition The Interfaces group Transition Adding Intelly Sensor / Probe Replacement Calibration Output 2 Output 2 Output 2 Output 1 Output 1 Output 2 Output 1 Output 1 Output 2 Output 1 Output 1 Output 1 Output 2 Output 1 Output 1 Output 2 Output 1 Output 1 Output 1 Output 2 Output 1 Output 2 Output 1 Output 2 Output 1 Output 2 Output 1 Output 1 Output 2 Output 1 Ou
	Physical Quantity Temperature V Frost Point Temperature V

Datalogging and Analysis Software:

This user friendly software tool is a great help for easy data analysis in graphical or spreadsheet format on a PC as well as for data and alarms management by e-mail or SMS.

Easy calibration and adjustment of the transmitter_

The modular housing of the EE29/EE31 enables a fast and easy on-site adjustment and calibration. Using the optional extension cable one can adjust or calibrate the entire measurement loop without interrupting the measurement. No need for time-consuming dismounting and wiring of the instrument. This feature makes the EE29/31 series suitable for use in regulatory environments (e.g. FDA, GAMP).

The adjustment of humidity and temperature (2 points or 1 point) is performed either with a simple routine using two push buttons on the printed circuit board or with the configuration software.

2 Status LEDs

Two status LEDs on the printed circuit board indicate the transmitter status and eventual errors, especially useful during installation or service operations.

Sensor Coating

Operation in heavily polluted and/or corrosive environments is typical for many industrial processes and can lead to drift or damage of the humidity sensor and thus to false measured values. The unique protective coating developed by E+E for the sensing probe brings a significant improvement on the long-term stability of the transmitter in very dirty and aggressive environments. (ordering code: HC01)

Integrated Display

The actual measured and calculated values as well as the corresponding Min/Max values can be indicated on an optional display. The physical quantity to be displayed is choosen with the push buttons on the housing. (ordering code: D05)

Interchangeable sensing probe

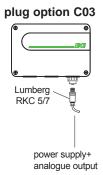
The interchangeable sensing probe with plug connection can be easily exchanged in the versions D and E. The installation of the probe cable (up to 20m / 65ft) is significantly simplified and can be installed prior to fitting the transmitter. (ordering code: P01)

Alarm outputs.

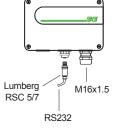
An optional alarm module with 2 relay outputs is available for control and alarm purposes. The selection of the physical quantity for the relay ouputs and the setting of threshold and hysteresis can be easily made with the configuration software included in the standard scope of supply.

Integrated power supply_

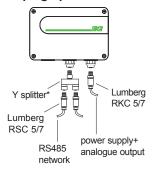
A power supply, integrated in the back module of the housing, can be ordered optionally (100...240V AC, 50/60Hz; ordering code V01). The power supply V01 is available for both polycarbonate and metal housing and comes standard with two plugs for supply and outputs to allow an easy connection.



Connection versions



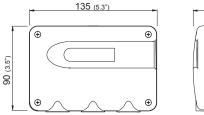
transmitter incl. alarm output: EE29: 2xM16 EE31: 3xM16



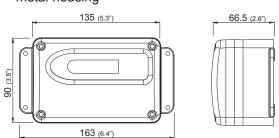
plug option C06

plug option C08

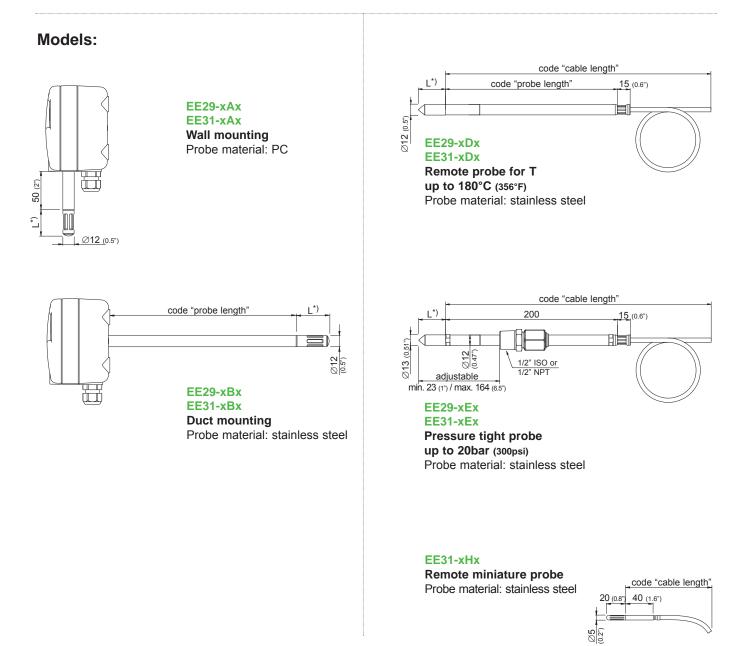
* Siemens 6ES7 194-1KA01-0XA0



Dimensions in mm.


Housing:

polycarbonate housing



metal housing

For use in harsh industrial environments all models of the EE29/31 are available in a robust metal housing. The very smooth surface and the rounded outlines allow for the use in clean rooms as well.

*) L = Filter length: refer to data sheet "Accessories page 138

Technical Data EE31_____

Measurement values

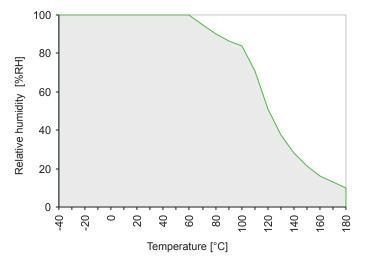
Relative humidity				1104000 400 /	110405					
Humidity sensor ¹⁾				HC1000-400 / 0100% RH	HC105)				
Working range ¹⁾ Accuracy ^{*)} (including hysteresis	o non linoari	ty and rar	aaatabil		orn ato	adarda adr	niniotroto			(1)
-1540°C (5104°F)	s, non-iinean ≤90% RH		Jealauli	$\pm (1.3 + 0.3\%)$			minsuale		, F I D, D	_v)
-1540°C (5104°F)	≥90 % RH			± 2.3% RH	111V) /0					
-2570°C (-13158°F)		1		± (1.4 + 1%*m	w) % R	н				
-40180°C (-40356°F				<u>+ (1.5 + 1.5%</u> *						
Temperature dependence of		;		typ. ± 0.01% F			RH/°F)			
Response time with metal grid Temperature	d filter at 20°	°C / t ₉₀		< 15s						
Temperature sensor element	EE31-x			Pt1000 (Tolera Pt1000 (Tolera		ass B, DIN	EN 607	'51)́		
Working range sensing head	E	EE31-xB>	x -40	.60°C (-40140°F) .80°C (-40176°F) .180°C (-40356°F)				180°C (-40 80°C (-40		
Accuracy A°C						∆°C 0.6 -	1			
		E31-xA/B/D	D/Ex			0.5 -		EE31-xHx		\square
	0.4 —		_			0.4 -				
	0.3					0.3 -		\sim		
	0.1 -					0.1 -	-			
					°C	0 -				+ ·
	-0.1 -	0 10 20 30 40	50 60 70	80 90 100 110 120 130 140 150 16	0 170 180	-0.1 -	au -30 -20 -10	0 10 20 30	40 50 60	70 80
	-0.2 -					-0.2 -			_	
	-0.4					-0.4 -				
	-0.5					-0.5 -				
	-0.6 🔟				-	-0.6 -	J			
Towns and the damage of the second	6			ture 1 0 005%0	100					
Temperature dependence of	relectronics	j		typ. ± 0.005°C	/ 0					
outs ²⁾			- 1			4				
Two freely selectable and sca	leable analo	gue outp	outs	0 - 5V		-1mA	< I _L < 1	ImA		
Two freely selectable and sca 0100% RH / xxyy°C rest	leable analo pectively	gue outp	outs	0 - 10V		-1mA	. < I _I < 1	ImA		
Two freely selectable and sca	aleable analo pectively	ogue outp	outs	0 - 10V 4 - 20mA		-1mA R _L <	. < I	lmA m		
Two freely selectable and sca 0100% RH / xxyy°C resp	leable analo pectively	ogue outp	outs	0 - 10V 4 - 20mA 0 - 20mA		-1mA R _L <	. < I _I < 1	lmA m		
Two freely selectable and sca	ileable analo pectively	ogue outp	outs	0 - 10V 4 - 20mA 0 - 20mA RS232C		-1mA R _L <	. < I	lmA m		
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface	pectively	ogue outp	outs	0 - 10V 4 - 20mA 0 - 20mA	al	-1mA R _L <	. < I	lmA m		
Two freely selectable and sca 0100% RH / xxyy°C resp	pectively			0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona	al	-1mA R _L <	. < I	lmA m		
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface	pectively	ogue outp		0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to		-1mA R _L < R _L <	. < IŪ < 1 500 Ohi 500 Ohi	ImA m m	units	
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement	pectively	from		0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i>	EE31	-1mA R _L < R _L <	. < I _ < 1 500 Ohi 500 Ohi 500 Ohi	ImA m m		
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity	pectively t range ²⁾³⁾ RH	from	1	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100	<i>EE31</i> 100	-1mA R _L < R _L <	EE31 100	ImA m	% RH	[
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature	t range ²⁾³⁾	from 0 -40	ו (-40)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140)	<i>EE31</i> 100 80	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176)	EE31 100 180	ImA m	% RH °C	(°F)
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature	t range ²⁾³⁾ RH T Td	from 0 -40 -40	(-40) (-40)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140)	<i>EE31</i> 100 80 80	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176) (176)	EE31 100 180 100	ImA m - <i>D,E</i> (356) (212)	% RH °C °C	(°F) (°F)
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature	range ²⁾³⁾ RH T Td Tf	from 0 -40 -40 -40	(-40) (-40)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32)	<i>EE31</i> 100 80 80 0	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176)	EE31 100 100 0	ImA m	% RH °C °C °C	(°F) (°F)
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature	t range ²⁾³⁾ RH T Td	from 0 -40 -40	(-40) (-40)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140)	<i>EE31</i> 100 80 80	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176) (176)	EE31 500 Ohi 500 Ohi 500 Ohi 500 Ohi 100 180 100 0 100	ImA m - <i>D,E</i> (356) (212) (32) (212)	% RH °C °C	(°F) (°F) (°F)
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature	RH T Td Tf Tw	from 0 -40 -40 -40 0	(-40) (-40) (-40)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32)	<i>EE31</i> 100 80 80 0	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176) (176) (32)	EE31 100 100 0	ImA m - <i>D,E</i> (356) (212) (32) (212)	% RH °C °C °C	(°F) (°F) (°F) (°F)
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature	RH T Td Tf Tw	from 0 -40 -40 -40 0 0	(-40) (-40) (-40) (32)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140)	<i>EE31</i> 100 80 80 0 80	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176) (176) (32) (176)	EE31 500 Ohi 500 Ohi 500 Ohi 500 Ohi 100 180 100 0 100	ImA m - <i>D,E</i> (356) (212) (32) (212)	% RH °C °C °C °C	(°F) (°F) (°F) (°F) (psi)
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure	RH T Td Tf Tw e e	from 0 -40 -40 -40 0 0	(-40) (-40) (-40) (32) (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3)	<i>EE31</i> 100 80 80 0 80 500 999	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176) (176) (32) (176) (7.5)	EE31 500 Ohi 500 Ohi 500 Ohi 500 Ohi 100 180 100 0 100 1100	ImA m	% RH °C °C °C °C mbar	(°F) (°F) (°F) (°F) (psi) (gr/lb
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio	RH T Td Tf Tw e r	from 0 -40 -40 -40 0 0 0 0	(-40) (-40) (-40) (32) (0) (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900)	EE31 100 80 80 0 80 500 999 300	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176) (176) (32) (176) (7.5) (9999)	EE31 500 Ohi 500 Ohi 500 Ohi 500 Ohi 100 180 100 100 1100 999	ImA m -D,E (356) (212) (32) (212) (15) (9999)	% RH °C °C °C °C mbar g/kg	(°F) (°F) (°F) (°F) (psi) (gr/lb
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy	RH T Td Tf Tw e c dv	from 0 -40 -40 -40 0 0 0 0	(-40) (-40) (-40) (32) (0) (0) (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60)	EE31 100 80 80 0 80 500 999 300	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176) (176) (32) (176) (7.5) (9999) (120)	EE31 500 Ohi 500 Ohi 500 Ohi 500 Ohi 100 180 100 100 1100 999 700	ImA m -D,E (356) (212) (32) (212) (15) (9999) (300)	% RH °C °C °C mbar g/kg g/m ³	(°F) (°F) (°F) (°F) (psi) (gr/lb
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy	RH T Td Tf Tw e c dv	from 0 -40 -40 -40 0 0 0 0	(-40) (-40) (-40) (32) (0) (0) (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60)	EE31 100 80 80 0 80 500 999 300	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176) (176) (32) (176) (7.5) (9999) (120)	EE31 500 Ohi 500 Ohi 500 Ohi 500 Ohi 100 180 100 100 1100 999 700	ImA m -D,E (356) (212) (32) (212) (15) (9999) (300)	% RH °C °C °C mbar g/kg g/m ³	(°F) (°F) (°F) (°F) (psi) (gr/lb
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy	RH T Td Tf Tw e c dv	from 0 -40 -40 -40 0 0 0 0	(-40) (-40) (-40) (32) (0) (0) (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) 835V DC	EE31 100 80 80 0 80 500 999 300	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176) (176) (32) (176) (7.5) (9999) (120)	EE31 500 Ohi 500 Ohi 500 Ohi 100 180 100 100 1100 999 700 2800	ImA m	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°F) (°F) (°F) (psi) (gr/lb (gr/lb
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage	RH T Td Tf Tw e r dv h	from 0 -40 -40 -40 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (32) (0) (0) (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) 835V DC 1230V AC	EE31 100 80 80 0 500 999 300 1000	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176) (176) (32) (176) (7.5) (9999) (120) (375000)	EE31 500 Ohi 500 Ohi 500 Ohi 100 180 100 100 1100 999 700 2800	ImA m -D,E (356) (212) (32) (212) (15) (9999) (300)	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°F) (°F) (°F) (°F) (psi) (gr/lt (gr/f ³ (lbf/lt
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v	RH T Td Tf Tw e r dv h	from 0 -40 -40 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (32) (0) (0) (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) 835V DC	EE31 100 80 80 0 80 500 999 300 1000	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176) (176) (32) (176) (7.5) (9999) (120) (375000) 40mA	EE31 500 Ohi 500 Ohi 500 Ohi 100 180 100 100 1100 999 700 2800	ImA m	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°F) (°F) (°F) (°F) (psi) (gr/lt (gr/f ³ (lbf/lt
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x o	RH T Td Tf Tw e r dv h	from 0 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (32) (0) (0) (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) 835V DC 1230V AC for 24V DC/AC	EE31 100 80 80 500 999 300 1000	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176) (176) (176) (7.5) (9999) (120) (375000) 40mA 80mA	EE31 500 Ohi 500 Ohi 500 Ohi 100 180 100 100 1100 999 700 2800	ImA m	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°F) (°F) (°F) (°F) (psi) (gr/lt (gr/f ³ (lbf/lt
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x c	t range ²⁾³⁾ RH T Td Tf Tw e e r dv h voltage outp current outpoints tight probe	from 0 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (32) (0) (0) (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) 835V DC 1230V AC for 24V DC/AC 0.0120bar (0	EE31 100 80 80 500 999 300 1000 C: typ. typ. 15300	-1mA R _L < R _L < - <i>B</i> , <i>H</i> (176) (176) (32) (176) (7.5) (9999) (120) (375000) 40mA 80mA sosi)	EE31 500 Ohi 500 Ohi 500 Ohi 500 Ohi 100 180 100 100 1100 999 700 2800 (optiona	ImA m -D,E (356) (212) (32) (212) (15) (9999) (300) (999999)	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°F) (°F) (°F) (psi) (gr/ll (gr/f ³ (lbf/ll
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x c Pressure range for pressure	t range ²⁾³⁾ RH T Td Tf Tw e e r dv h voltage outp current outpoints tight probe	from 0 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (32) (0) (0) (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) 835V DC 1230V AC for 24V DC/AC 0.0120bar (0 WINDOWS 20	EE31 100 80 80 500 999 300 1000 2: typ. typ. 15300 00 or la	-1mA R _L < R _L < -B, H (176) (176) (176) (7.5) (9999) (120) (375000) 40mA 80mA posi) ater; serial	EE31 500 Ohi 500 Ohi 500 Ohi 500 Ohi 100 180 100 1100 999 700 2800 (optiona	ImA m -D,E (356) (212) (32) (212) (15) (9999) (300) (999999)	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°F) (°F) (°F) (°F) (psi) (gr/lt (gr/f ³ (lbf/lt
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x c Pressure range for pressure System requirements for sof Housing / protection class	t range ²⁾³⁾ RH T Td Tf Tw e e r dv h voltage outp current outpoints tight probe	from 0 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (32) (0) (0) (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) 835V DC 1230V AC for 24V DC/AC 0.0120bar (0 WINDOWS 20 PC or Al Si 9 (0)	EE31 100 80 80 500 999 300 1000 2: typ. typ. 15300 00 or la Cu 3 / l	-1mA R _L < R _L < -B, H (176) (176) (176) (7.5) (9999) (120) (375000) 40mA 80mA bosi) ater; serial P65; Nema	EE31 500 Ohi 500 Ohi 500 Ohi 100 180 100 1100 999 700 2800 (optiona interfac 4	ImA m - <i>D,E</i> (356) (212) (212) (15) (9999) (300) (999999) Il 100240\	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°F) (°F) (°F) (°F) (psi) (gr/lt (gr/f ³ (lbf/lt
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x c Pressure range for pressure System requirements for sof Housing / protection class Cable gland	t range ²⁾³⁾ RH T Td Tf Tw e e r dv h voltage outp current outpoints tight probe	from 0 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (32) (0) (0) (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) 835V DC 1230V AC for 24V DC/AC 0.0120bar (0 WINDOWS 20 PC or Al Si 9 (M16 x 1.5	EE31 100 80 80 500 999 300 1000 2: typ. 15300 00 or la Cu 3 / ll cable	-1mA R _L < R _L < -B, H (176) (176) (176) (176) (176) (175) (9999) (120) (375000) 40mA 80mA bosi) ater; serial P65; Nema Ø 4.5 - 10	EE31 500 Ohi 500 Ohi 500 Ohi 500 Ohi 100 100 100 1100 999 700 2800 (optiona interfac 4 mm (0.	ImA m -D,E (356) (212) (32) (212) (15) (9999) (300) (999999) Il 100240 Se 18 - 0.39")	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°F) (°F) (°F) (°F) (psi) (gr/lt (gr/f ³ (lbf/lt
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x o Pressure range for pressure System requirements for sof Housing / protection class Cable gland Electrical connection	t range ²⁾³⁾ RH T Td Tf Tw e e r dv h voltage outp current outpre tight probe ftware	from -40 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (32) (0) (0) (0) (0) (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) 835V DC 1230V AC for 24V DC/AC 0.0120bar (0 WINDOWS 20 PC or Al Si 9 (0 M16 x 1.5 screw termina	EE31 100 80 80 500 999 300 1000 C: typ. 15300 00 or la Cu 3 / ll cable Is up to	-1mA R _L < R _L < -B, H (176) (176) (176) (176) (176) (175) (9999) (120) (375000) 40mA 80mA bosi) ater; serial P65; Nema Ø 4.5 - 10	EE31 500 Ohi 500 Ohi 500 Ohi 500 Ohi 100 100 100 1100 999 700 2800 (optiona interfac 4 mm (0.	ImA m -D,E (356) (212) (32) (212) (15) (9999) (300) (999999) Il 100240 Se 18 - 0.39")	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°F) (°F) (°F) (psi) (gr/lk (gr/f ³ (lbf/lk
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x c Pressure range for pressure System requirements for sof Housing / protection class Cable gland	t range ²⁾³⁾ RH T Td Tf Tw e e r dv h voltage outp current outpre tight probe ftware	from -40 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (32) (0) (0) (0) (0) (0)	0 - 10V 4 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) 835V DC 1230V AC for 24V DC/AC 0.0120bar (0 WINDOWS 20 PC or Al Si 9 (M16 x 1.5 screw terminal -4060°C (-40.	EE31 100 80 80 500 999 300 1000 C: typ. 15300 00 or la Cu 3 / ll cable Is up to 140°F)	-1mA R _L < R _L < -B, H (176) (176) (176) (176) (176) (176) (32) (176) (37)	EE31 500 Ohi 500 Ohi 500 Ohi 100 100 100 1100 999 700 2800 (optiona interfac 4) mm (0. nm² (AW	ImA m m -D,E (356) (212) (32) (212) (15) (9999) (300) (999999) II 100240 II 100240 II 100240 II 100240 II 100240	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°F) (°F) (°F) (psi) (gr/lb (gr/lb
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x o Pressure range for pressure System requirements for sof Housing / protection class Cable gland Electrical connection Working and storage temper	t range ²⁾³⁾ RH T Td Tf Td Tf Tw e e r dv h voltage outp current_outpi tight probe ftware rature range	from 0 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (32) (0) (0) (0) (0) (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) 835V DC 1230V AC for 24V DC/AC 0.0120bar (0 WINDOWS 20 PC or Al Si 9 (M16 x 1.5 screw terminal -4060°C (-40. -2050°C (-4.	EE31 100 80 80 500 999 300 1000 1000 1000 c: typ. 15300 00 or la Cu 3 / ll cable ls up to 140°F) 122°F) -	-1mA R _L < R _L < -B, H (176) (175) (176) (175) (176) (175) (176) (175) (176) (175) (176) (175) (176) (175) (176) (175) (175) (175) (176) (175) (175) (175) (175) (176) (175) (EE31 500 Ohi 500 Ohi 500 Ohi 500 Ohi 100 100 100 100 100 2800 (optiona interfac 4 0 mm (0. mm² (AW	ImA m m -D,E (356) (212) (12) (15) (9999) (300) (999999) (300) (999999) (1100240) (999999) (1100240) (1	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°F) (°F) (°F) (psi) (gr/lb (gr/lb
Two freely selectable and sca 0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x o Pressure range for pressure System requirements for sof Housing / protection class Cable gland Electrical connection	t range ²⁾³⁾ RH T Td Tf Td Tf Tw e e r dv h voltage outp current_outpi tight probe ftware rature range	from 0 -40 -40 0 0 0 0 0 0 0 0 0 0 0 0 0	(-40) (-40) (-40) (32) (0) (0) (0) (0) (0)	0 - 10V 4 - 20mA RS232C RS485 optiona up to <i>EE31-A</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) 835V DC 1230V AC for 24V DC/AC 0.0120bar (0 WINDOWS 20 PC or Al Si 9 (M16 x 1.5 screw terminal -4060°C (-40.	EE31 100 80 80 500 999 300 1000 1000 1000 c: typ. 15300 00 or la Cu 3 / ll cable ls up to 140°F) 122°F) -	-1mA R _L < R _L < -B, H (176) (176) (176) (176) (176) (176) (32) (176) (37)	EE31 500 Ohi 500 Ohi 500 Ohi 500 Ohi 100 100 100 100 100 2800 (optiona interfac 4 0 mm (0. mm² (AW	ImA m m -D,E (356) (212) (32) (212) (15) (9999) (300) (999999) II 100240 II 100240 II 100240 II 100240 II 100240	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°F) (°F) (°F) (psi) (gr/lb (gr/lb

*) The accuracy statement includes the uncertainty of the factory calibration with an enhancement factor k=2 (2-times standard deviation). The accuracy was calculated in accordance with EA-4/02 and with regard to GUM (Guide to the Expression of Uncertainty in Measurement).

Technical Data EE29_

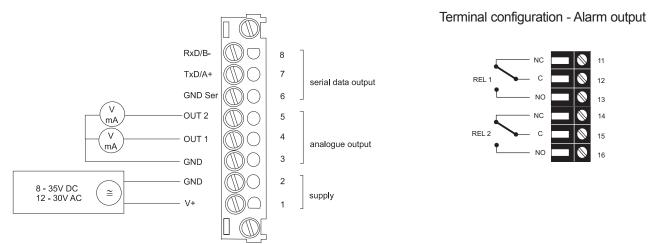
Measurement values

Relative humidity		
Humidity sensor ¹⁾	HC1000-400	
Working_range ¹⁾	0100% RH	
Accuracy $^{^{\star)}}$ (including hysteresis, non-linearity and repeatable		
-1540°C (5104°F) ≤90% RH	± (1.3 + 0.3%*mv) % R	Н
-1540°C (5104°F) >90% RH	± 2.3% RH	
-2570°C (-13158°F)	± (1.4 + 1%*mv) % RH	
-40180°C (-40356°F)	<u>+ (1.5 + 1.5%*mv) % R</u>	
Temperature dependence of electronics	typ. ± 0.01% RH /°C	(0.0055% RH / °F)
Response time with metal grid filter at 20°C / t_{90}	< 15s	
Temperature		
Temperature sensor element	Pt1000 (Tolerance clas	-
	60°C (-40140°F)	EE29-xBx -4080°C (-40176°F)
EE29-xDx40.	180°C (-40356°F)	EE29-xEx -40180°C (-40356°F)
Accuracy $\Delta^{\circ}C$	0.6	
	0.5 - 0.4 -	
	0.3	
	0.2 - 0.1 -	
	0 -40 -30 -20 -10 0 10 20 30 40 50 60	C
	-0.3	
	-0.4	
	-0.6	
Temperature dependence of electronics	typ. ± 0.005°C/°C	
itputs ²⁾		
Two freely selectable and scaleable analogue outputs	0 - 5V	-1mA < I _L < 1mA
0100% RH / xxyy°C respectively	0 - 10V	-1mA < I _L < 1mA
	4 - 20mA	R _L < 500 Ohm
	0 - 20mA	R _L < 500 Ohm
neral		
Supply voltage	835V DC	
	1230V AC	(optional 100240V AC, 50/60Hz
Current consumption - 2x voltage output	for 24V DC/AC: typ. 4	.0mA
- 2x current output	typ. 8	0mA
Pressure range for pressure tight sensor	0.0120bar (0.15300ps	i)
System requirements for software	WINDOWS 2000 or late	er; serial interface
Housing / protection class	PC or Al Si 9 Cu 3 / IP6	65; Nema 4
Cable gland	M16 x 1.5 cable Ø	9 4.5 - 10 mm (0.18 - 0.39")
Electrical connection	screw terminals up to n	nax. 1.5mm ² (AWG 16)
Sensor protection		filter, PTFE filter or metal grid filter
Working and storage temperature range of electronics		<u> </u>
	-2050°C (-4122°F) - h	nousing with display
Electromagnetic compatibility according to	EN61326-1 FN613	26-2-3 ICES-003 ClassB 🖉 🖉
Electromagnetic compatibility according to	EN61326-1 EN613 Industrial Environment	


Refer to the working range of the humidity sensor.
 2) Can easily be changed by software.
 *) The accuracy statement includes the uncertainty of the factory calibration with an enhancement factor k=2 (2-times standard deviation). The accuracy was calculated in accordance with EA-4/02 and with regard to GUM (Guide to the Expression of Uncertainty in Measurement).

Display	graphical LC display (128x32 pixels), with integrated push-buttons for selecting parameters and MIN/MAX function					
Alarm outputs	250V	switch contact AC / 6A DC / 6A				
Threshold + hysteresis	can b	e adjusted with configuration software				
Switching parameters	freely	selectable between:	EE29	EE31		
	RH	Relative humidity	\checkmark	\checkmark		
	Т	Temperature	\checkmark	\checkmark		
	Td	Dew-point temperature		\checkmark		
	Tf	Frost-point temperature		\checkmark		
	Tw	Wet-bulb temperature		\checkmark		
	е	Water vapour partial pressure		\checkmark		
	r	Mixture ratio		\checkmark		
	dv	Absolute humidity		\checkmark		
	h	Specific enthalpy		\checkmark		

Technical Data for Options EE29/EE31_____


Working range humidity sensor.

The gray area shows the allowed measurement range for the humidity sensor.

Operating points outside of this range do not lead to destruction of the element, but the specified measurement accuracy cannot be guaranteed.

Connection diagram_

Ordering Guide EE31

Hardwara Configur	ation	EE31-	EE31-	EE31-	EE31-	EE31-
Hardware Configuration Housing	metal housing	м	м	м	м	м
nousing	polycarbonate housing	P	P	P	P	P
Туре	humidity + temperature	FT	FT	FT	FT	FT
Model		A	в	D	E	н
Filter	membrane filter 5mm (0.2")					1
	stainless steel sintered filter	3	3	3	3	
	PTFE filter	5	5	5	5	
	stainless steel grid filter (up to 180°C / 356°F)	9	9	9	9	
Cable length	2m (6.6ft)			02	02	02
(incl. probe length)	5m (16.4ft)			05	05	05
()	10m (32.8ft)			10	10	10
	20m (65.6ft)			20	20	20
Probe length	65mm (2.6")			2		
	200mm (7.9")		5	5	5	
	400mm (15.8")		6	6		
Pressure tight	1/2" male thread		-	-	HA03	
Feedthrough	1/2" NPT thread				HA07	
Interface	RS232					
	RS485	N	N	N	N	N
	ethernet interface ¹⁾	E	E	E	E	E
Display	without display			_		
2 iopiaj	with display	D05	D05	D05	D05	D05
Alarm output 2)	without relay					
ann output	with relay	sw	sw	sw	sw	sw
Plug	cable glands			0		
i iug	1 plug for power supply and outputs	C03	C03	C03	C03	C03
	1 cable gland / 1 plug for RS232	C06	C06	C06	C06	C06
	2 plugs for power supply/outputs and RS485 Network	C08	C08	C08	C08	C08
Sensing probe	fixed	000	000	000	000	000
ochang probe	interchangeable			P01	P01	
Coating sensor	no			101	101	
coating sensor	ves	HC01	HC01	HC01	HC01	
Supply voltage	835V DC / 1230V AC	11001	11001	11001	11001	
oupply voltage	integrated power supply 100240V AC, 50/60Hz ³⁾	V01	V01	V01	V01	V01
						101
Software Configura	ition					
Physical	relative humidity RH [%] (A) Output 1	Select a	cording	to Orderii	ng Guide	(A - H,J)
parameters of	temperature T [°C or °F] (B)					
outputs	dew point temperature Td [°C or °F] (C) Output 2	Select a	cording	to Orderii	ng Guide	(A - H,J)
	frost point temperature Tf [°C or °F] (D)					
	wet bulb temperature Tw [°C or °F] (E)					
	water vapour partial pres. e [mbar] (F)					
	mixture ratio r [g/kg] (G)					
	absolute humidity dv [g/m ³] (H)					
	specific enthalpy h [kJ/kg] (J)					
Type of	0-5V (2)					
output signals	0-10V (3)	Select a	cordina	to Orderii	na Guide	(2.3.5.6)
	0-20mA (5)		Ŭ		Ŭ	
	4-20mA (6)					
Measured value units	metric / SI					
	non metric / US	E01	E01	E01	E01	E01
Scaling of T-output	-4060 (T02) -2080 (T24) 0350 (T89) Output T			to Order		
Scaling of Td-output	050 (T04) 0180 (T26) 32120 (T90)				3 54.44	(
in°C or °F	0100 (T05) -40180 (T52) 32140 (T91) Output Td	Select ar	cording	to Orderir	na Guide	(Tdxx)
	060 (T07) -40100 (T79) 32180 (T92)	Select at			.g calue	
	40120 (T12) -40350 (T82) 32250 (T94)	Other T a	and Td-so	caling refe	er to page	146
	0120 (T16) -40140 (T83) 32300 (T95)			-		
	080 (T21) -40300 (T84) 32132 (T96)					
	-4080 (T22) 0250 (T88) 32350 (T101)					

Combination ethernet and alarm output is not possible / combination ethernet and integrated power supply is not possible
 Combination alarm output and plugs is not possible (with cable glands only) / combination alarm output and integrated power supply is not possible
 Integrated power supply includes 2 plugs for power supply and outputs / further plug options are not possible

Order Example_

EE31-PFTB55SW/BC2-T07-Td03

Housing: Type: Model: Filter: Probe length: Alarm output:

polycarbonate housing humidity + temperature duct mounting PTFE Filter 200mm (7.9") yes

Output 1: Output 2: Output signal: Scaling of T-output: Scaling of Td-output:

Т Τd 0-5V 0...60°C -10...50°C

Ordering Guide EE29____

							EE29-	EE29-	EE29-	EE29-
Hardware Configur	ation									
Housing	metal housing						м	М	м	м
	polycarbonate housi						Р	Р	Р	Р
Туре	humidity + temperat	ure					FT	FT	FT	FT
Model							A	В	D	E
Filter	stainless steel sinter	red filter					3	3	3	3
	PTFE Filter						5	5	5	5
	stainless steel grid f	ilter (up to 18	0°C / 356°	'F)			9	9	9	9
Cable length	2m (6.6ft)								02	02
(incl. probe length)	5m (16.4ft)								05	05
	10m (32.8ft)								10	10
	20m (65.6ft)								20	20
Probe length	65mm (2.6")								2	
	200mm (7.9")							5	5	5
	400mm (15.8")							6	6	
Pressure tight	1/2" male thread									HA03
feedthrough	1/2" NPT thread									HA07
Display	without display									
	with display						D05	D05	D05	D05
Alarm output 1)	without relay									
	with relay						SW	SW	SW	SW
Plug	cable glands									
-	1 plug for power supply and outputs							C03	C03	C03
	1 cable gland / 1 plu	ig for RS232					C06	C06	C06	C06
Sensing probe	fixed	0					1			
51	interchangeable								P01	P01
Coating sensor	no						1			
j	ves						HC01	HC01	HC01	HC01
Supply voltage	835V DC / 1230	V AC								
	integrated power su	pply 100240	OV AC, 50	/60Hz ²⁾			V01	V01	V01	V01
Software Configura	ation									2
Physical parameters	Relative humidity	RH [%]	(A)			Output 1	Select acco	ording to Or	dering Gui	de (A or B
of outputs	Temperature	T [°C or °F]				Output 2	-			
Type of	0-5V	.[00.1]	(2)			o atpat 2	_	ording to Or ording to Or		
output signals	0-10V		(3)				Select acco		dening Gui	ue (2,3,3,0
output signals	0-20mA		(5)							
	4-20mA		(6)							
Temperature unit	°C		(0)							
remperature unit	°F						E01	E01	E01	E01
Cooling of Toutout		20 00	(T24)	0 250	(TOO)					
Scaling of T-output	-4060 (T02)	-2080	· · ·	0350		Output T	Select acc	ording to C	ordering Gu	ude (Txx)
in°C or °F	050 (T04)	0180	· · ·	32120			Other T-sc	aling refer	to page 14	6
	0100 (T05)	-40180		32140				3 · · · · ·	1.9-11	
	060 (T07)	-40100	· · ·	32180						
	-40120 (T12)	-40350	· · ·	32250						
	0120 (T16)	-40140	· · ·	32300						
	080 (T21)	-40300	(T84)	32132	(T96)		1			
	000 (121)	10000	(104)	52152	(130)					

1) Combination alarm output and plugs is not possible (with cable glands only) / combination alarm output and integrated power supply is not possible 2) Integrated power supply includes 2 plugs for power supply and outputs / further plug options are not possible

Accessories / Replacement Parts_____

(For further information, see data sheet "Accessories", page 138)

- Filter caps	(HA0101xx)
- Display + housing cover in metal	(D05M)
- Display + housing cover in polycarbona	te(D05P)
- Replacement sensor	(Pxx)
- Humidity sensor	(FE10)
- Interface cable for PCB	(HA010304)
- Interface cable for plugs C06	(HA010311)
- Mounting flange stainless steel	(HA010201)
- Mounting flange 5mm	(HA010208)
(for EE31, model H only)	

- Bracket for installation onto mounting rails	(HA010203)
- Drip water protection	(HA010503)
- 1% Calibration	(EE90/3H)
- Calibration set	(HA0104xx)
- Datalogging and analysis software	(HA010602)
(for EEO(order)	

(for EE31 only) - RS485 Kit (HW + SW) for networking (HA010601) (for EE31 only)

EE30EX Series

EE30EX series transmitters from E+E Elektronik are designed for the accurate measurement of humidity and temperature in the range between 0...100% RH and -40...180°C (-40...356°F). Models for pressure tight installations from 0.01...15 bar (0.15...218psi) complete the range of products.

EE30EX meets the ATEX requirements and IECEx standards of intrinsically safe machinery:

Applied standards for ATEX: EN60079-0:2004 EN60079-11:2007 EN60079-26:2007

Applied standards for IECEx: IEC 60079-0:2004 IEC 60079-11:2006 IEC 60079-26:2006

The EC type examination was carried out by Physikalisch-Technische Bundesanstalt (PTB), the German national institute for science and technology.

The transmitters of EE30EX series consist of:

- EE30EX supply and evaluation unit, classified according to II (1) G [EEx ia] IIC subject to EC-type examination certificate PTB 99 ATEX 2042 and [EEx ia] IIC according to IECEx PTB 05.0031.
- sensor driver unit and sensor probe, classified according II 1/2 G EEx ia IIC T6 subject to EC-type examination certificate PTB 99 ATEX 2043 X and EEx ia IIC T6 according to IECEx PTB 05.0032X.

The sensor probe can be employed in zone 0 and in temperature class T6 (apparatus group II, category 1). For EE30EX versions D and E the cable length between sensing probe and sensor driver unit can be up to 10m (32.8ft). The maximum length of the cable between the supply and evaluation unit and the sensor driver unit is 100m (328ft).

The analogue output signals for humidity and temperature are available as current or as voltage.

State-of-the-art microprocessor technology makes both ana-

logue outputs free selectable and scaleable via RS232 serial interface.

Besides measurement of humidity and temperature EE30EX series calculate the values of the following physical quantities:

- Τd - dew point temperature
- frost point temperature Tf
- wet bulb temperature Tw
- water vapour pressure е r
- mixing ratio
- absolute humidity dv
- specific enthalpy h

These are available on the RS232 serial interface, on the analogue outputs and on the integrated LC display.

The communication with a PC is assisted by an user friendly software, running under MS Windows[™] which enables the user to change original factory settings easily.

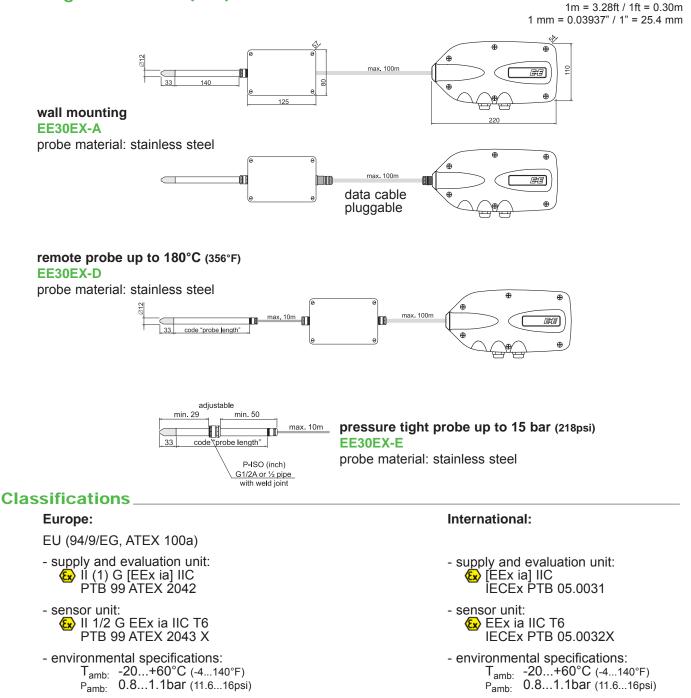
Humidity/Temperature Transmitter for Intrinsically Safe Applications

v2.6

Features

EE30EX

Configuration Software _


The Configuration Software is used for:

- flexible, easy, and fast setup of the analogue outputs resp. of the RS232 serial interface.
- adjustment of the humidity and temperature outputs.
- exchange of the sensor.

Typical Applications

chemical processes pharmaceutical applications explosive endangered storage rooms EC-Type examination according to ATEX approved to IECEx approved for zone 0 highest accuracy up to 180°C (356°F) traceable calibration dew point, absolute humidity,... measurement incl. MS Windows™ Software

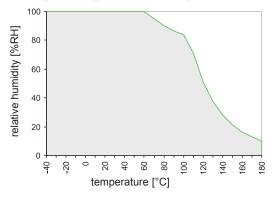
Housing Dimensions (mm).

Technical Data EE30EX

Measuring values

uring values Relative humidity					
Humidity sensor ¹⁾			HC1000-4	100	
Measuring range ¹⁾			0100%		
Accuracy ²⁾ (including hystere	sis, non-linea	arity and repeatabil	ity, traceable to internati	onal standards, administ	trated by NIST, PTB, BEV)
	°C (5104°F)			.3%*mv) % RH	, , , ,
	°C (5104°F)		± 2.3% R		
	°C (-13158°		± (1.4 + 1	%*mv) % RH	
	0°C (-40356			.5%*mv) % RH	
Temperature dependence			typ. 0.08%		
Response time with filter.			< 30 sec.		
Temperature sensor			Pt1000 (E	DIN EN 60751, class A	٩)
Veasuring range sensor l	head		EE30EX-/		, (-4140°F)
0 0			EE30EX-I	D -40180°C	(-40356°F)
			EE30EX-	E -40180°C	(-40356°F)
Temperature dependence					20 130 140 150 170 1100 °C
Temperature dependence Max. adjustable Meas		Pango ³⁾	typical 0.0	JU5 C/ C	
พลง. อยุบรเลมเซ พิเฮอร		from	to		upit
		ITOTTI			unit
Lumidit.	RH	0	<i>EE30EX-A</i> 100	EE30EX-D/E	%RH
Humidity		0		100	
		-40 (-40)	60 (140)	180 (356)	°C (°F)
Dew point temperature	Td	-40 (-40)	60 (140)	100 (212)	°C (°F)
Erect point temperature	Tf	10 (10)	0 (20)	0 (20)	°C (%F)

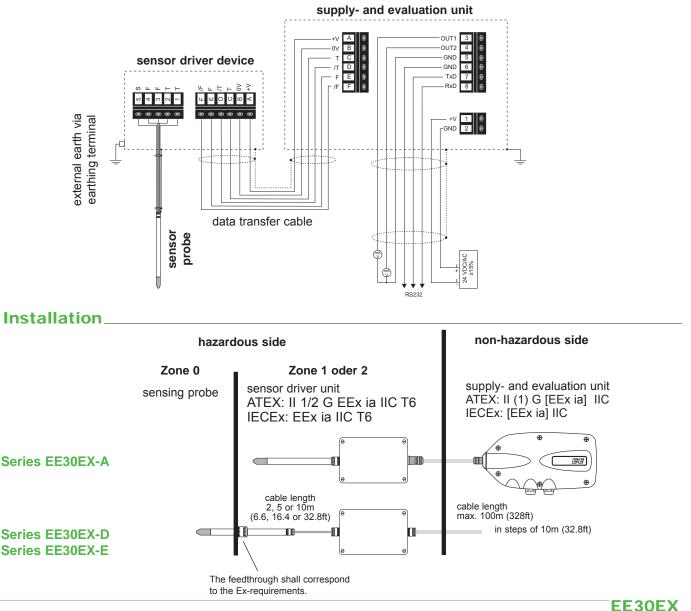
	Dew point temperature	Td	-40 (-40)	60 (140)	100 (212)	°C	(°F)
	Frost point temperature	Tf	-40 (-40)	0 (32)	0 (32)	°C	(°F)
	Wet bulb temperature	Tw	0 (32)	60 (140)	100 (212)	°C	(°F)
	Water vapour pressure	е	0 (0)	200 (3)	1100 (15)	mbar	(psi)
	Mixing ratio	r	0 (0)	425 (2900)	999 (9999)	g/kg	(gr/lb)
	Absolute humidity	dv	0 (0)	150 (60)	700 (300)	g/m ³	(gr/ft ³)
	Specific enthalpy	Н	-50 (-15000)	400 (150000)	2800 (999999)	kJ/kg	(lbf/lb)
Outp	uts						
	Two freely selectable and	scalable ou	tputs 0	- 5 V	-1 mA < I _L < 1 mA		
			0	- 10 V	-1 mA < I _L < 1 mA		
			4	- 20 mA	R _L < 360 Ohm		
	Serial interface		R	S232C	_		
Gene	eral						


Supply voltage	24V DC/V AC ± 15%				
Current consumption	≤ 150mA (24V DC); ≤ 280mA (24V AC)				
Pressure range with pressure tight sensor probe	0.0115 bar (0.15218psi)				
System requirements for software	WINDOWS 2000 or later; serial interface				
Housings	supply- and evaluation unit ABS-	olastic / IP65			
-	sensor driver unit AlSi1	2 / IP65			
Cable gland	PG 7 and PG 9; for cable diameter 5 - 9 mm (0.2 - 0.35")				
Electrical connection	screw terminals max. 1.5 mm ² (AWG 16)				
Sensor protection	sintered stainless steel filter, PTFE-filter or metal grid filter				
Temperature range	sensor probe:	according measuring range			
	electronic sensor driver device:	-2060°C (-4140°F)			
	electronic supply- and evaluation device:	-4060°C (-40140°F)			
	electronic with display:	040°C (32104°F)			
Storage temperature range	electronics and sensor head	-3060°C (22140°F)			
Electromagnetic compatibility according	EN61326-1 EN61326-2-3	ICES-003 ClassB			
	Industrial Environment	FCC Part15 ClassB			
1) Refer to the working range of the humidity sensor	3) Refer to accuracies of calculated values				

 1) Refer to the working range of the humidity sensor.
 3) Refer to accuracies of calculated values.

 2) The accuracy statement includes the uncertainty of the factory calibration with an enhancement factor k=2 (2-times standard deviation). The accuracy was calculated in accordance with EA-4/02 and with regard to GUM (Guide to the Expression of Uncertainty in Measurement).

Working Range Humidity Sensor


The specified working range for the humidity sensor element is shown in terms of humidity/temperature limits.

Although the sensors would not deteriorate beyond the limits, their performance can only be specified within the limits for the working range.

Sensing head with protective coating_

For use in heavy polluted or aggressive environment E+E has developed a special protective coating process (order code: HC01). Both humidity and temperature sensor elements are covered with a polymer film. Extensive tests have proved an amazing improvement of the resistance to chemical pollutants which leads to a much better long term stability of the transmitter.

Connection Diagram

Ordering Guide EE30EX _____

Hardware Configura	ation				EF-A	+.0	
Filter	stainless steel sintered filter	r			3	3	
	PTFE Filter*)				5	5	
	metal grid filter (up to 120°				6	6	
	stainless steel grid filter (up	to 180°C / 356°F)			9	9	
Cable length	2m (6.6ft)					02	
	5m (16.4ft)					05	
	10m (32.8ft)					10	
Probe length	200mm (7.9")					5	
D	400mm (15.8")					6	
Pressure tight	1/2" male thread					HA03	
Feedthrough	1/2" pipe weld joint 1/2" NPT thread					HA05 HA07	
Data cable	not pluggable					HAU/	+
Data Cable	pluggable				P02	P02	
Display	without display				1.02	1.02	+
	with display				D01	D01	
Coating sensor	no						t
	yes				HC01	HC01	
Software Configura					0.10		
Physical	Relative humidity	RH[%]	(A)	Output 1		ct accordi	
parameters of outputs	Temperature Dew point temperature	T [°C or °F] Td [°C or °F]	(B) (C)				
ouiputo	Frost point temperature	Tf [°C or °F]	(O) (D)	Output 2	Sele	ct accordi	ind
	Wet bulb temperature	Tw [°C or °F]	(E)			ng Guide	
	Water vapour partial pres.		(F)				
	Mixture ratio Absolute humidity	r [g/kg] dv [g/m ³]	(G) (H)				
	Specific enthalpy	h [kJ/kg]	(J)				
Type of	0-5V		(2)		Solo	ct accordi	in
output signals	0-10V		(3)			ing Guide	
	4-20mA		(6)				÷
Measure value units	metric / SI not metric / US				E01	E01	
Scaling of T-output	-4060 (T02)	-40120 (T12)	-40160 (T33)				
Scaling of Td-output	-1050 (T03)	-20100 (T14)	-40180 (T52)	Output T		ct accordi ring Guide	
in°C or °F	050 (T04)	+20120 (T15)	-40140 (T83)				-
	0100 (T05) 060 (T07)	0120 (T16) 080 (T21)	32120 (T90) 32140 (T91)	Output Td		ct accordi	
	-3070 (T08)	-4080 (T21)	32140 (T91) 32180 (T92)			-	1
	-30120 (T09)	-2080 (T24)	32132 (T96)			or Td-sca to page 14	
	-20120 (T10)	-2060 (T25)				to page 14	ŧŪ

*) to be used for the apparatus group II B only

Order Example _____

Position 1 - Transmitter:	EE30EX-E3056HA03P02/BC3-T05-Td14 Humidity/Temperature Transmitter Series EE30EX			
	Model: Filter: Cable length: Probe length: Feedthrough: Data cable:	For pressure tight installations stainless steel sintered filter 5m (16.4ft) 400mm (15.8") 1/2" male thread pluggable		
	Output 1: Output 2: Output signal: Scaling of T-output: Scaling of Td-output:	T Td 0-10V 0100°C -20100°C		
Position 2 - Data cable:	Data cable 60m (196.8ft)			

EE30EX

EE23 Series

Humidity / Temperature Transmitter for Industrial Applications

Calculation of Dew Point and Frost Point Temperature

The EE23 series stands for multifunctionality, highest accuracy, easy mounting and service.

The new IP65 water proof housing concept is based on three modules:

- back module with connectors
- middle module which accommodates the electronics
- cover module with optional display

It offers easy installation and the possibility for fast exchange of the sensor unit for service purposes.

For use in harsh industrial environments all models of the EE23 are available in a robust metal housing.

The EE23 can be employed in all common applications by choosing the appropriate housing combination.

- Model A / B: wall / duct mounting
- Model C: remote sensing probe has a working temperature range -40...120°C (-40...248°F)
- Model G: version with optional radiation shield is dedicated for outdoor and meteorological applications.
- **Model H**: with remote miniature probe for concealed mounting (e.g. in museums) or in tight spaces.

The high quality HC series humidity sensor elements and newest microprocessor technology are the guarantee for:

- best accuracy over the whole working range
- display and output of relative humidity, temperature, dew point and frost point temperature
- small hysteresis
- excellent long term stability
- highest resistance to pollutants.

Easy configuration of the humidity and temperature outputs is made possible by the innovative design of the EE23 electronics. One can select between various current or voltage output signals.

One can very easily perform a two point humidity and temperature adjustment on site by using two push buttons on the PCB.

The three modules concept makes it also possible to perform a loop calibration according to FDA (Food and Drug Administration) recommendations.

Further options are the integrated display, cable outlets via connectors, sensor coating and an hygrostate output for control and alarm purposes.

Typical Applications

high end HVAC climate chambers process technology dryers meteorology clean rooms green houses stocks

temperature range -40...120°C (-40...248°F) traceable calibration calculation of dew point / frost point temperature two point humidity and temperature calbration very easy mounting and maintenance on site calibration best accuracy over whole temperature range remote sensing probe up to 20m (65.6ft) alarm output

Field Calibration_

The three modules housing design allows a fast and easy dismounting of the EE23 for humidity field calibration. No interruption of the measurement is necessary for loop calibration which is essential for the calibration procedure recommended by FDA (Food and Drug Administration).

- 1 EE23 back module mounted on the wall
- ② EE23 extension cable (can be ordered separately)
- ③ EE23 middle module mounted in the calibrator
- (4) Humidity reference system (e.g. HUMOR 20)

Utilization of the extention cable enables the user to perform full loop calibration as recommended by FDA.

Two Point Adjustment _

With an easy routine the user can perform a fast and accurate two point adjustment of relative humidity and temperature.

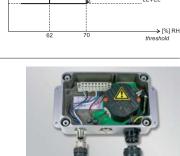
Display_

The actual measured data can be indicated on the optional integrated display. It is possible to choose between relative humidity (RH), temperature (T), dew point (Td), frost point (Tf) or an alternating display of two values.

Alarm Output_

Simple control applications can be solved by the optional alarm output of the EE23. The user can set threshold and hysteresis by potentiometers.

Integrated power supply_


A power supply, integrated in the back module of the housing, can be ordered optionally (100...240V AC, 50/60Hz; ordering code V01). The power supply V01 is available for both polycarbonate and metal housing and comes standard with two plugs for supply and outputs to allow an easy connection.

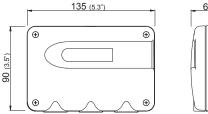
switching off

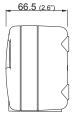
HYSTERESIS

8% RH

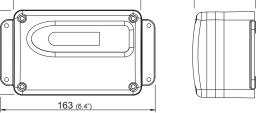
_Features

90 (3.5")



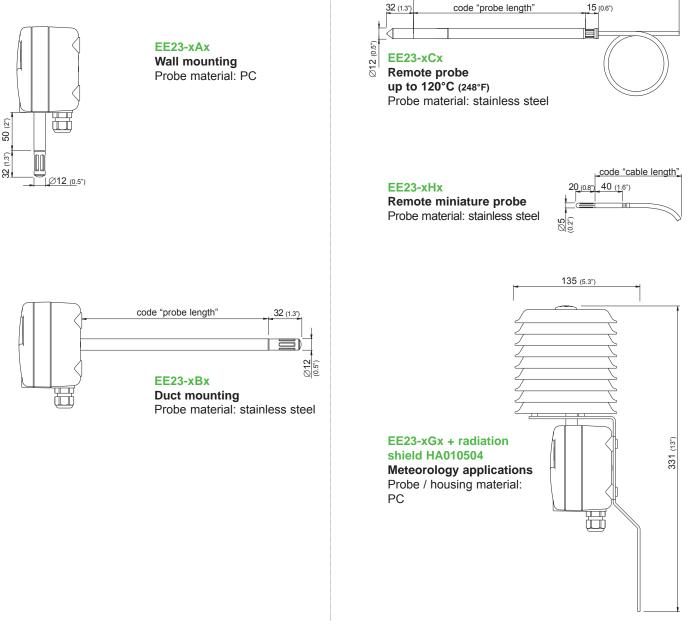

66.5 (2.6")

Dimensions in mm_


Housing:

polycarbonate housing

metal housing



For use in harsh industrial environments all models of the EE23 are available in a robust metal housing. The very smooth surface and the rounded outlines allow for the use in

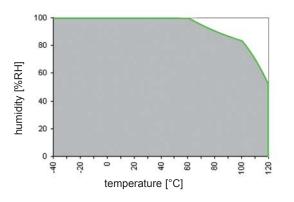
clean rooms as well.

code "cable length"

Models:

Technical Data EE23_

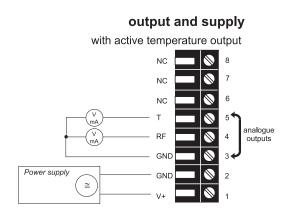
Measured quantities


easured quantities Relative humidity							
Humidity sensor ¹⁾ EE23-xA/B/C/G	x	HC1000-200					
EE23-xHx		HC105					
Working range ¹⁾		0100% RH					
Accuracy ²⁾ (including hysteresis, non-linear	itv and repeatabi	litv. traceable to ir	ntern. standards. a	dministrated by N	IST. PTB. E	3EV)	
	0% RH	± (1.3 + 0.3%		,		,	
	0% RH	± 2.3% RH	,				
-2570°C (-13158°F)		± (1.4 + 1%*r	nv) % RH				
-40120°C (-40248°F)		± (1.5 + 1.5%					
Temperature dependence electronics			typ. ± 0.015% RH/°C				
Response time with metal grid filter at 2	20°C / t ₉₀	< 15 sec.					
Temperature							
Temperature sensor element EE23-xA	/B/C/Gx	Pt1000 (class	A, DIN EN 6075	51)			
EE23-xH	х	-	B, DIN EN 607				
	Ax -4060°C	-		x -4080°C	(-40176°F)		
	Cx -40120°			lx -4080°C			
	Gx -4060°C				(
	EE23-xA/B/C/		Δ°C 0.5	EE23-x		4	
0.4 -	EE23-XA/B/C/	GX	0.4 -	EE23-X			
0.3			0.3 —				
0.2	\sim		0.2	\sim			
0	++++++	+++++++	0	+ + + + + +	+ + + +		
-0.1 -40 -30	-20 -10 0 10 20 30 40	50 60 70 80 90 100 110	120 °C -0.1 -40	30 -20 -10 0 10 20	1 1 1 1 30 40 50 60	70 80	
-0.2 —		_	-0.2 —				
-0.3			-0.3				
-0.5			-0.5			\searrow	
Temperature dependence of electronics	<u> </u>	typ. 0.002°C/′	2				
utputs		0 - 1 V		mA < I _I < 0.5	mA		
0100% RH / xxyy°C ³⁾		$0 - 5 V$ $-1 \text{ mA} < I_{L} < 1 \text{ mA}$					
(temperature output scale adjustable by E+E	or	$0 - 10 V$ $-1 mA < I_{I} < 1 mA$					
with configuration kit)		$0 - 20mA$ $R_{\rm I} < 350 Ohm$					
		4 - 20 mA	R_	< 350 Ohm			
ax. adjustable output scaling ⁴⁾							
	from	up to			unit	ts	
		EE23-A,G	EE23-B, H	EE23-C			
HumidityRH	0	100	100	100	% R	H	
Temperature T	-40 (-40)	60 (140)	80 (176)	120 (248)	°C	(°F)	
Dew-point temperature Td	-40 (-40)	60 (140)	80 (176)	100 (212)		(°F)	
Frost-point temperature Tf	-40 (-40)	0 (32)	0 (32)	0 (32)	°C	(°F)	
eneral							
Supply voltage							
for 0 - 5 V outputs			C or 12 - 28V AC		0401400		
for 0 - 10 V, 0 - 20 mA and 4-20		15.0 - 35V DC	C or 15 - 28V AC	; (optional 100.	240V AC, 5	0/60Hz	
Current consumption for voltage output for DC supply ≤ 25 mA		with clarm m	dulas for DC a	$\sqrt{2}$			
for AC supply ≤ 25 mA			odule: for DC s	$pply \leq 35 mA$ $pply \leq 60 mA$			
Current consumption for current output					eff		
for DC supply \leq 50 mA		with alarm mo	odule: for DC s	unnly < 60 mA			
for AC supply \leq 90 mA		with alarmine		$apply \leq 00 m_{\odot}$			
Housing / protection class		PC or ALSi 9	Cu 3 / IP65; Nem				
Cable gland ⁵⁾		M16x1.5		10 mm (0.18 - 0.39			
Electrical connection ⁵⁾			als max. 1.5 mm^2				
Working temperature range of electroni	CS		0140°F)				
Working temperature range with display		-3060°C (-2					
		-0000 0 1-2					
Storage temperature range		-4060°C (-4					

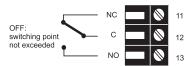
Refer to the working range of the humidity sensor
 Refer to ordering guide
 Refer to accuracies of calculated values (page 152)
 Connection plugs refer to ordering guide
 The accuracy statement includes the uncertainty of the factory calibration with an enhancement factor k=2 (2-times standard deviation). The accuracy was calculated in accordance with EA-4/02 and with regard to GUM (Guide to the Expression of Uncertainty in Measurement).

	CE compatibility according	EN61326-1 EN6132	6-2-3	ICES-003 ClassB
		Industrial Environment		FCC Part15 ClassB
Alar	m Module - optional			
	Output	SPDT-Switch up to 250	V AC/8A	or 28V DC/8A
		threshold	hyste	resis
	Setting range	1095% RH	315	5% RH
	Setting accuracy	± 3% RH		

Humidity Sensor - Working Range_


The working range of the humidity sensor element is shown in terms of humidity / temperature limits.

Although the sensors would not deteriorate beyond the limits, their performance can only be specified within the limits of the working range.


Sensor Coating

Operation in heavily polluted and/or corrosive environments is typical for many industrial processes and can lead to drift or damage of the humidity sensor and thus to false measured values. The unique protective coating developed by E+E for the sensing probe (ordering code: HC01) brings a significant improvement on the long-term stability of the transmitter in very dirty and aggressive environments.

Connecting Diagram

alarm output

Ordering Guide

		EE23-	EE23-
Hardware Configuratior	1		
Housing	metal housing	м	м
-	polycarbonate housing	Р	Р
Туре	humidity + temperature	FT	FT
Model	wall mounting	Α	
	duct mounting	В	
	remote probe up to 120°C (248°F)	С	
	wall mounting - for meteorology ¹⁾	G	
	remote miniature probe		н
Filter	membrane filter 5mm		1
	stainless steel sintered filter	3	
	PTFE filter	5	
	metal grid filter	6	
Cable length (incl. probe length	· ·	02	02
models C and H only)	5m (16.4ft)	05	05
models C and H only)		10	10
	10m (32.8ft)	20	20
Droho longth	20m (65.6ft)	20	20
Probe length	65mm (2.6")		
(models B and C only)	200mm (7.9")	5	
Disala	400mm (15.8")	6	
Display	no display		
(refer to software-code)	with display	D03	D03
Alarm output ²⁾	no alarm output		
(not available for model F)	with alarm output	SW	SW
Plug	standard cable 1 gland M16x1.5; cable Ø 4.5 - 10 mm (0.18 - 0.39")		
	2 glands M16x1.5	C11	C11
	1 plug for supply + outputs	C03	C03
Coating Sensor	no		
	yes	HC01	
Supply voltage	1535V DC / 1528V AC		
	integrated power supply 100240V AC, 50/60Hz ³⁾	V01	V01
Software Settings		Select accordi	a to Ordoring
Physical	relative humidity RH [%] (A) Output 1	Guide	
parameters of	temperature T [°C or °F] (B) –	Guide	(A - D)
outputs	dew-point temperature Td [°C or °F] (C) Output 2	Select according	ng to Ordering
-	frost-point temperature Tf [°C or °F] (D)	Guide	(A - D)
Type of output	0 - 1V (1)	Select according	na to Orderina
signals	0 - 5V (2)	Guide	
	0 - 10V (3)		
	0 - 20mA (5)		
Temperarture unit	4 - 20mA (6) °C		
·	°F	E01	E01
Scaling of T-output	-4060 (T02) -40120 (T12) -40248 (T78) Output T	Select accordi	
Scaling of Td-output	-1050 (T03) 20120 (T15) 0140 (T85)	Guide	(1XX)
Scaling of Tf-output in°C or °F	050 (T04) -3060 (T20) 0248 (T87) Output Td	Select according	ng to Ordering
	0100 (T05) 080 (T21) 32120 (T90) 060 (T07) -4080 (T22) 32140 (T91)	Guide	(Tdxx)
	-3070 (T08) -2080 (T24) 32248 (T93) Output Tf	Select accordi	
	-30120 (T09) -2060 (T25) 32132 (T96)	Guide	
	-20120 (103) -2000 (123) -20102 (130)	Other T/Td/Tf-s	caling refer to
	-1070 (T11) -2050 (T48)	page	146
Display mode	measurand output 1+2 alternating	M12	M12
	measurand output 1	M01	M01
	measurand output 2	M02	M01
	nbination with metal housing!		

Model G is not available in combination with metal housing!
 Combination alarm output and plugs is not possible (with cable glands only) / combination alarm output and integrated power supply is not possible / alarm output for RH only
 Integrated power supply includes 2 plugs for power supply and outputs / further plug options are not possible

Accessories (additional information see data sheet "Accessories", page 138) _

filter caps radiation shield - external power supply unit display + housing cover in metal display + housing cover in polycarbonate mounting flange - mounting flange 5mm (for model H only) - bracket for installation onto mounting rails - replacement humidity sensors - drip water protection - calibration set - extension cable for field calibration - 1% calibration

(HA0101xx) (HA010504) (V02) (D03M) (D03P) (HA010201) (HA010208) (HA010203) (FE09) (HA010503) (HA0104xx) (HA010302) (EE90/3H)

Order Example

EE23-MFTC6025D03/AC2-Td04-M01

metal housing metal grid cable length: 2 m (6.6ft) probe length: rF Td output signal: 0-5V scaling of T-output: 0...50°C display mode:

housing:

display: output 1:

output 2:

type: model:

filter:

humidity + temperature remote sensor probe 200 mm (7.9") with display measurand output 1

EE22 Series

Humidity / Temperature Transmitter with interchangeable probes

Unique for the EE22 series are the interchangeable sensing probes with connector.

The calibration data is stored in the probes, which are therefore interchangeable and probe replacement does not affect the performance of EE22.

The outstanding accuracy over the entire temperature range is based on very precise calibration methods and on the latest microprocessor technology. Well-proven E+E humidity sensor elements ensure excellent long-term stability.

For high temperature applications (up to $+80^{\circ}C / +176^{\circ}F$) or in case of limited space availability, the sensing probes can be connected to EE22 housing with cables (2m, 5m or 10m / 6.6ft, 16.4ft or 32.8ft) without any repercussions for the overall accuracy of the instrument.

Voltage 0 - 1 / 10V or current 4 - 20mA (2 wire) outputs are available, of which the temperature output can be scaled according to the application (see ordering guide).

EE22 is suitable for direct wall mounting and for installation on rails according to DIN EN 50022.

The optional display indicates the actual RH and T values.

Duct mounting can be done easily with the optional duct mounting kit.

Field calibration of humidity and temperature.

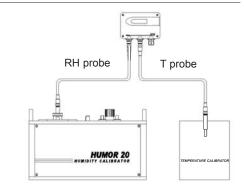
In the pharmaceutical and biotechnology industry a Loop-Calibration of the RH and T outputs, recommended by the FDA (Food and Drug Administration), can easily be performed utilizing separate RH and T probes (Type: EE22-xFTx2x).

The RH and T outputs can be adjusted with push buttons on the printed circuit board.

Reference probes_

As useful accessories reference probes (incl. test report) representing fixed humidity and temperature values are available.

They shall be installed instead of the measuring probes to check function and accuracy of the evaluation unit.

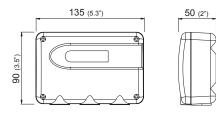

One probe simulates high humidity and low temperature, the other low humidity and high temperature, to check the upper and lower end of both analogue outputs.

Typical Applications

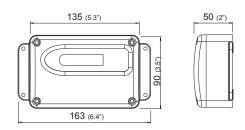
pharmaceutical industry clean rooms storage rooms green houses cooling chambers

interchangeable probes remote sensing probe up to 10m (32.8ft) measuring range 0...100% RH / -40...80°C (-40...176°F) optional display traceable calibration cost saving, easy loop-calibration of RH and T probes

v1.7

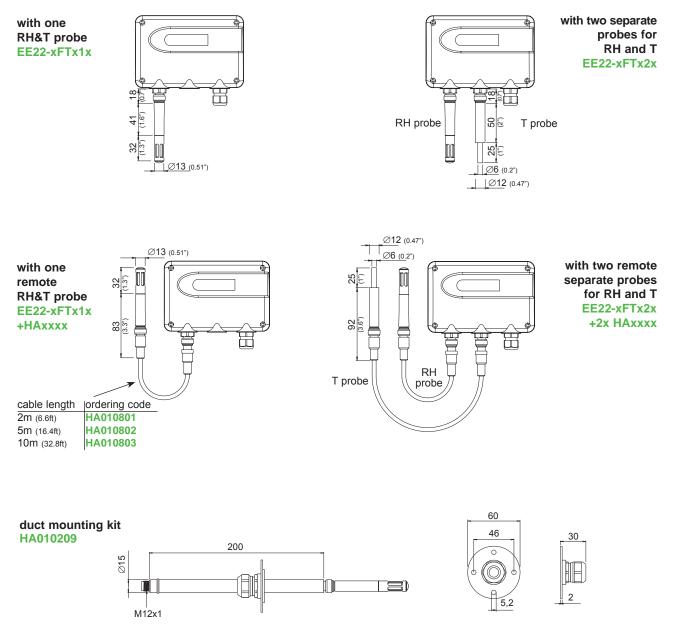

EE22

Features



Housing dimensions (mm)

polycarbonate housing

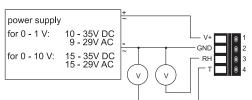

metal housing

For use in harsh industrial environments all models of EE22 series are available in a robust metal housing. Code "M" in the ordering guide indicates a metal housing for the EE22 evaluation unit, as well as for the interchangeable probe(s).

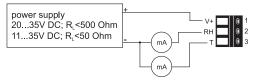
The smooth surface and the rounded outlines allow for the use in clean room applications.

Probe dimensions (mm)

EE22


Technical Data

Relative Humidity	110405	
Sensor element ¹⁾	HC105	
Working range ¹⁾	0100% RH	
Accuracy ²⁾ (including hysteresis, non-linearity and		
	-1540°C (5104°F) ≤90% RH	± (1.5 + 0.5%*mv) % RH
	-1540°C (5104°F) >90% RH	± 2.5% RH
Tomporature dependence of electronice	-4080°C (-40176°F)	± (1.7 + 1.5%*mv) % RH
Temperature dependence of electronics	typ. ± 0.006% RH/°C < 15s (at 20°C / t _{oo})	
Response time with metal grid filter Temperature	$< 15S (al 20 C / l_{90})$	
Sensor element	Pt1000 (tolerance class A, DIN EN 6	30751)
Working range sensing probe	fixed sensing probe: -4060°C (-40	
working range sensing probe	remote sensing probe: -4000°C (-40	
Accuracy		
(at 20°C: ±0,1°C)	Δ°C 0.5	
(0.3	
	0.2 - 0.1 -	
	0 -0.1 -40 -30 -20 -10 0 10 20 30 40 50	60 70 80 °C
	-0.3	
	-0.5	
Tomporature dependence of electronice	turn 1 0 007°C/°C	
Temperature dependence of electronics Response time	typ. ± 0.007°C/°C	t thin < 2 min
Response line	with combined RH/T probe:	t ₆₃ : typ. < 3min
uts	with seperated RH and T probes:	t ₆₃ : typ. < 6min
0100% RH/ xxyy°C ³⁾	0 - 1V -0.5mA ·	< I _L < 0.5mA
(temperature output scale according to		I _L < 1mA
Txx ordering code)	$4 - 20 \text{mA} (\text{two wire})$ $R_{\rm L} < 500$	$1 \sum 0$
Temperature dependence of		
analogue outputs	max. 0.2 ^{mV} resp. 1 ^{µA}	
eral		
Supply voltage		
for 0 - 1V output	10 - 35V DC or 9 - 29V	AC
for 0 - 10V output	15 - 35V DC or 15 - 29V	
for 4 - 20mA output	10 - 35V DC	-
Load resistor for 4 - 20mA output	$R_{L} < \frac{U_{V} - 10V}{0.02 A} [\Omega]$	
Current concurrentian		
Current consumption	typ. 10mA for DC supply	typ. 20mA _{eff} for AC supply
Electrical connection	Screw terminals max. 2.5mm ²	
Cable gland	M16x1.5 cable Ø 4.5 - 10 m	
Sensor protection	(optional connector; type: Lumberg, membrane filter, PTFE filter, metal g	
Sensor protection	metal grid filter (stainless steel)	
Material	housing: PC or Al Si 9 Cu 3	probe: PC or stainless steel
Protection class of housing	IP65; Nema 4	
_		
Electromagnetic compatibility	EN61326-1 EN61326-2-3	ICES-003 ClassB
Marking tomporature range of probe	Industrial Environment	FCC Part15 ClassB
Working temperature range of probe	-4060°C (-40140°F) / 80°C (176°F) for	remote sensing prope
Working temperature range of electronics	-4060°C (-40140°F) -4060°C (-40140°F)	
Storage temperature range	-4000 6 (-40140°F)	
1) Refer to working range of humidity sensor HC105		


Refer to working range of humidity sensor HC105
 The accuracy statement includes the uncertainty of the factory calibration with an enhancement factor k=2 (2-times standard deviation). The accuracy was calculated in accordance with EA-4/02 and with regard to GUM (Guide to the Expression of Uncertainty in Measurement).
 Refer to ordering guide

Connection Diagram

EE22-FT1,3xx

EE22-FT6xx

Ordering Guide_

Position	1 -	Transmitter
----------	-----	-------------

n 1 - Transmitter		EE22-
Hardware Configurati	on	
Housing	metal housing	M
	polycarbonate housing	Р
Туре	humidity + temperature	FT
Output	0-1V	1
	0-10V	3
	4-20mA	6
Model	wall mounting - cable gland M16x1.5 cable Ø 4.5 - 10 mm (0.18	- 0.39") A
	wall mounting - rear cable outlet	F
Probe	1 probe RH&T	1
	2 separate probes for RH and T	2
Filter	membrane filter	1
	stainless steel sintered filter	3
	PTFE filter	5
	metal grid filter (polycarbonate)	6
	metal grid filter (stainless steel)	9
Display	without display	
	with display	D07
Plug	without plug	
	1 plug for power supply and outputs	C03
Sensor coating	without coating	
ochion country	with coating	HC01
	with coating	11001
Software Configuration	n	
T-Unit	°C	
	°F	E01
Scaling of T-output	-4060 (T02) 0120 (T16) -2050 (T48)	Select according t
in°C or °F	-1050 (T03) -3060 (T20) -40176 (T80)	
	050 (T04) 080 (T21) 0140 (T85)	(Txx)
	060 (T07) -4080 (T22) 0176 (T86)	Other T-scaling refe
	-3070 (T08) -2080 (T24) 32120 (T90)	page 146
	-1070 (T11) -2060 (T25) 32140 (T91)	page 140
	-40120 (T12) -3050 (T45) 32132 (T96)	
n 2 - Probe cable		
Cable length	2m (6.6ft)	HA010801
5	5m (16.4ft)	HA010802

Accessories / Replacement Parts

(For further information see data sheet "Accessories", page 138)

(EE07-MT)

(HA010209)

- Replacement probe RH&T in polycarbonate (EE07-PFTx)
- Replacement probe T in polycarbonate (EE07-PTx)
- Replacement probe RH&T in metal (EE07-MFTx)
- Replacement probe T in metal
- Display + housing cover in metal (D07M)
- Display + housing cover in polycarbonate (D07P)
- Duct mounting kit

- Probe cable 2m $_{\rm (6.6ft)}$ / 5m $_{\rm (16.4ft)}$ / 10m $_{\rm (32.8ft)}$ (HA0108xx)

EE22

- Bracket for rail installation (HA010203)External supply unit (V02)
- RH calibration set(HA0104xx)- Reference probes(HA010403)
- Filter caps (HA0101xx)

Order Example _

Position 1 - Transmitter:

EE22-MFT3A26C03/T07

housing:	metal housing
type:	humidity + temperature
output:	0-10V
model:	wall mounting - cable gland M16x1.5
probe:	2 separate probes for RH and T
filter:	metal grid filter (polycarbonate)
display:	without display
plug:	1 plug for power supply and outputs
sensor coating:	without coating
T-Unit:	°C
scaling of T-output:	060°C

Position 2 - Probe cable:

2x HA010802 cable length: 2x 5m (2x 16.4ft)

EE21 Series

High-Precision Humidity / Temperature Transmitter for HVAC Applications

Transmitters of the EE21 series have been developed for high-precision measurement of relative humidity and temperature.

EE21 transmitters are available for wall and duct mounting with or without the very useful snap inmounting kit, which allows a quick and easy exchange of the transmitter. Outputs can be selected between voltage and current.

An optional radiation shield providing a forced ventilation is recommended for use in outdoor applications.

Special protection coating for the sensing element (code - HC) permits the permanent use in very polluted environments.

High humidity calibration is recommended for applications in high lasting humidities > 90% RH (Code - CA01).

Humidity Two-point Adjustment_

With an easy routine via the push-buttons "UP" and "DOWN" on the circuit board the user can perform a fast and accurate two-point adjustment of relative humidity.

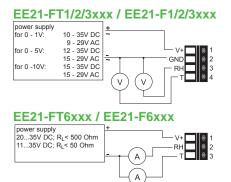
EE21

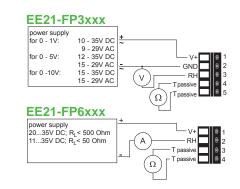
Typical Applications

green houses storage rooms swimming halls meteorology measuring range 0...100% RH accuracy ±2% RH traceable calibration working range -40...60°C (-40...140°F) wettable excellent long term stability

Technical Data_

Sensor	HC1000 or HC1000C	(with coating)	
Analogue output appropriate 0100% RH	0-1V	` -0.5mA < ́I₁ < 0).5mA
• • • • •	0-5V / 0-10V	-1mA < I _I < 1	mA
	4-20mA (two wires)	R _I < 500 Ohm	
Working range ¹⁾	0100% RH	-	
Accuracy at 20°C (68°F)	± 2% RH (090%)	± 3% RH (90100	0%)
· · · · ·			nistrated by NIST, PTB, BE\
Hysteresis 10% - 80% - 10%	< 2% RH	,	3
Temperature dependence of electronics	typ. 0.03% RH/°C	(0.02% RH/°F)	
Temperature dependence of probe	typ. 0.03% RH/°C	(0.02% RH/°F)	
Temperature	51		
Sensor	Pt1000 (tolerance clas	s A. DIN EN 60751)	
Analogue output -4060°C (-40140°F)	0-1V	-0.5mA < I ₁ < 0).5mA
	0-5V / 0-10V	-1mA < 1 < 1	mA
	4-20mA (two wires)		
Accuracy		- M	
			type B + type N
	0.4	Δ°C	0.3
	0.2		0.2
		30 40 50 80 °C	
	-0.1 -20 -30 -20 -10 0 10 20	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-0.1 -20 -30 -20 -10 0 10 20 30 40
	-0.3		-0.3
	-0.5		


General Supply


Supply				
for 0 - 1V	10 - 35V DC or 9	- 29V AC		
for 0 - 5V	12 - 35V DC or 15	5 - 29V AC		
for 0 - 10V	15 - 35V DC or 15	5 - 29V AC		
for 4 - 20mA	10V +R _L x 0,02 < U _V < 35V DC;	R _L < 500 Ohm		
Current consumption	for DC supply: typ. 5mA	for AC supply: typ. 15mA _{eff}		
Electrical connection	screw terminals max. 1.5 mm ² (A	WG 16)		
Cable gland	M16x1.5 or connection plug (only	snap-in models N + M)		
	cable Ø 4.5 - 10 mm (0.18 - 0.39")			
Sensor protection	membrane filter, sintered stainles	s steel filter, metal grid filter, PTFE filter		
Electromagnetic compatibility	EN61326-1 EN61326-2-3	ICES-003 ClassB		
	Industrial Environment	FCC Part15 ClassB		
Temperature ranges	working temperature probe:	-4060°C (-40140°F)		
	working temperature electronics:	-4060°C (-40140°F)		
	storage temperature:	-2560°C (-13140°F)		
1) Please refer to working range of HC1000!	. .	· /		

Dimensions (mm)_

Connection Diagram

Ordering Guide

MODEL	OUTPUT T-SENSOR HOUSING			PROBE LENGTH (see dimensions "A")	FILTER
humidity + temperature (FT)	0 - 1 V (1)	Pt 100 DIN A (A)	wall mounting (A)	50 mm (1.9") (2)	membrane filter (1)
humidity (F)	0 - 5 V (2)	Pt 1000 DIN A (C)	duct mounting (B)	200 mm (7.9") (5)	sintered stainless steel filter(3)
humidity+temp. passive (FP)	0 - 10 V (3)		snap in - wall mounting ¹⁾ (M)		metal grid filter (6)
	4 - 20 mA (6)		snap in - duct mounting ¹⁾ (N)		
EE21-					

COATING		CALIBRATION		T-UNIT		SCALING OF T-OUTPUT				
no	(no code)	standard	(no code)	°C	(no code)	-4060	(T02)	-40140	(T83)	
yes	(HC01)	high humio	dity (CA01)	°F	(E01)	-3070	(T08)	0176	(T86)	
						-2080	(T24)	32132	(T96)	
						other	(Txx)			

1) Combination snap - in mounting and model FP is not possible

Accessories_

EE21

- radiation shield (HA010501)

- filter caps (HA0101xx)

Order Example_

EE21-FT3A26/T24

model:	RH/T transmitter
output:	0 - 10V
housing type:	wall mounting
probe length:	50 mm (7.9")
filter:	metal grid filter
sensor coating:	no
calibration:	standard
T-unit:	°C
Scaling of T-output:	-2080°C

34

EE16 Series

EE16 transmitters are the ideal solution for accurate measurement of relative humidity and temperature at a reasonable price in HVAC applications. The appropriate filter cap enables employment in heavily polluted environment.

The new developed E+E humidity sensors HC101 guarantee excellent long term stability and resistance against chemical pollutants. Their excellent reproducibility allows a simple low-cost-one-point calibration for very good accuracy over the entire working range.

EE16 transmitters are available as wall or duct mounted, with current or voltage output signals.

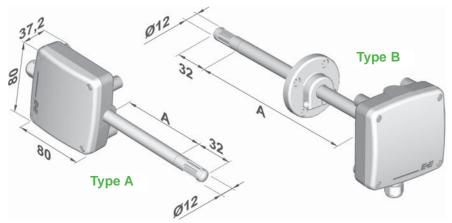
Typical Applications

building-automation storage rooms climate and ventilation control

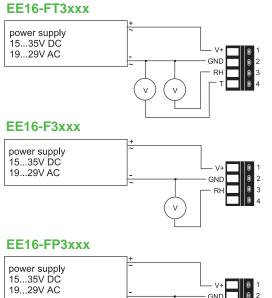
Technical Data_ Measuring values

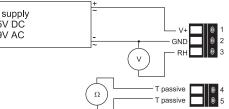
Humidity / Temperature Transmitter for HVAC Applications

Features

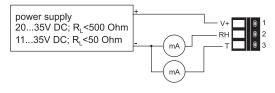

excellent price/performance ratio wettable long term stable traceable calibration

Relative Humidity		
Sensor	HC101	
Output appropriate 0100% RH	0-10 V	-1 mA < I _L < 1 mA
	4-20 mA (two wire)	R _L < 500 Ohm
Working range ¹⁾	1095% RH	-
Accuracy at 20°C (68°F)	±3% RH	
	Traceable to intern. st	andards, administrated by NIST, PTB, BEV
Temperature dependence at 45% RH	typ0.05% RH /°C ((-0.03% RH / °F)
Temperature		
Sensor	Pt1000 (class A, DIN	EN 60751)
Output appropriate 050°C (32122°F)	0-10 V	-1 mA < I _L < 1 mA
	4-20 mA (two wire)	R _L < 500 Ohm
Accuracy at 20°C (68°F) ²⁾	±0.3°C (±0.5°F)	
eral		
Supply voltage		
for 0 - 10 V	15 - 35V DC or 24V A	AC ±20%
for 4 - 20 mA	10V + R _L x 20 mA < L	Jv < 35V DC
Current consumption	for DC supply t	typ. 8 mA
	for AC supply t	typ. 20 mA _{eff}
Electrical connection	screw terminals max.	1.5 mm ² (AWG 16)
Housing / protection class	Polycarbonat / IP65; N	Nema 4
Cable gland	M16 x 1.5	cable Ø 4.5 - 10 mm (0.18 - 0.39")
Sensor protection	membrane filter, meta	l grid filter, stainless steel sintered filter
Electromagnetic compatibility	EN61326-1	
	EN61326-2-3	
Temperature range	working temperature:	-550°C (23122°F)
	storage temperature:	-2560°C (-13140°F)


2) Please note: temperature accuracy EE16-x6xx2x: ±0.5°C (±0.9°F)

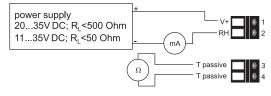


Housing Dimensions (mm)



Connection Diagram

EE16-FT6xxx



1 mm = 0.03937" / 1" = 25.4 mm

EE16-F6xxx

power supply 2035V DC; R _L <500 Ohm 1135V DC; R _L <50 Ohm	+ V+ 0 1 RH 0 2 RH 0 3

EE16-FP6xxx

Ordering Guide_

.											
MODEL	DEL OUTPUT		T-Sensor (only model FP)		HOUSING		PROBE LENGTH (according to "A")		FILTER		
humidity + temperature (FT humidity (F humidity + temperature (FF passive	F)	0-10V 4-20 mA	(3) (6)	Pt 100 DIN A Pt 1000 DIN A NTC 10k others on request	(A) (C) (E)	wall mounting duct mounting	1 f 1	50 mm (1.9") 200 mm (7.9")	(2) (5)	membrane filter sintered stainless steel filter metal grid	(1) (3) (6)
EE16-											

Order Example_

EE16-F3A21 model: output: housing: probe length:

filter:

humidity transmitter 0-10V wall mounting 50 mm (1.9") membrane filter

ELEKTRONIK®

EE14 Series

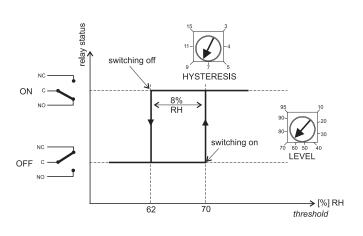
The EE14 hygrostat is based on the well proved E+E humidity sensors of the HC series, which guarantee excellent long term stability, low hysteresis and high resistance to pollutants. The switching threshold is freely adjustable in the range of 10...95% RH with a hysteresis which can be set independently between 3% and 15% RH.

EE14 hygrostat is available for wall or duct mounting, the right choice of protection filter cap enables maintenance free function in heavily polluted environment.

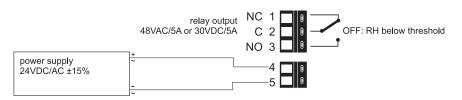
Typical Applications _

refrigeration swimming halls climate- and ventilation controls

Hygrostats for Wall and Duct Mounting Applications



Features

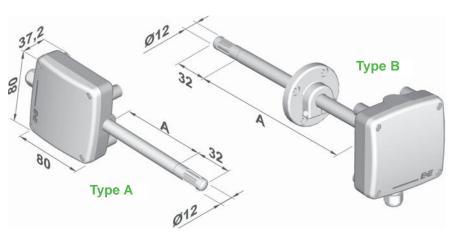

maintenance free operation easy adjustment via poti working range 10...95% RH wettable

Working Principle_

With a potentiometer it is possible to adjust the threshold between 10 and 95% RH. A second potentiometer is setting the switching-hysteresis between 3 and 15% RH.

Connection Diagram

Technical Data _____


Measuring value

Humidity sensor	HC101	
Output	centre-zero relay	up to 30V DC / 5A or 48V AC / 5A
	threshold	hysteresis
Setting range	1095% RH	315% RH
Setting accuracy	± 3% RH	

General

IP40
CE

Housing Dimensions (mm)_

1 mm = 0.03937"/ 1" = 25.4 mm

Ordering Guide_____

HOUSING		PROBE LENGTH (according to "A")		FILTER	
wall mounting	(A)	20 mm (0.7")	(1)	membrane filter	(1)
duct mounting	(B)	200 mm (7.9°)	(5)	metal grid filter	(6)
EE14-					

Order Example_____

EE14-A1	
housing:	
probe length:	
filter:	

wall mounting 20 mm (0.7") membrane filter

EE14_

EE10 Series

HVAC Humidity / Temperature Transmitter for Indoor Applications

EE10 room transmitters are the ideal solution for indoor applications such as HVAC in residential and official buildings.

The very stylish, functional housing makes easy installation and fast exchange of the sensing unit for service purposes possible. The high quality E+E humidity sensor and state-ofthe-art microprocessor controlled electronics are the guarantee for best accuracy and a wide range of options.

The standard humidity output of EE10 transmitters is 4 - 20 mA or 0 - 10 V. The temperature output signal can be active or passive.

All EE10 versions can be equipped with a good legible LC display. For EE10-FT versions the displayed values for humidity and temperature will alternate.

Typical Applications

building management for residential and office areas air conditioning switching cabinets climate control in hotels and museums

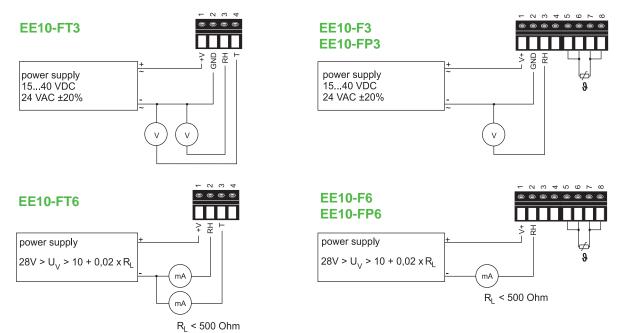
Technical Data

Measuring Quantities

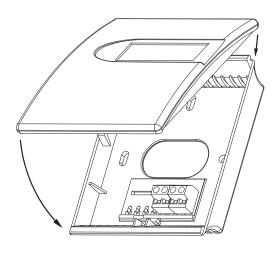
Humidity sensor	HC103		
Analogue output 0100% RH	0-10 V	-1 mA < I _I < 1mA	
	4-20 mA (two wires)	$R_{\rm L} < (U_{\rm V} - 10)/0.02 < 500 \rm Ohm$	
Working range ¹⁾	095 % RH		
Accuracy at 20°C (68°F) and Uv=24VDC	±2% RH (4060% RH)	±3% RH (1090% RH)	
	Traceable to intern. standar	s, administrated by NIST, PTB, BE	
Temperature dependence at 60% RH	typical 0.06% RH /°C (0.03	• RH / °F)	
Temperature (active output)			
Analogue output 050°C (32122°F) ²⁾	0-10 V	-1 mA < I _L < 1mA	
	4-20 mA (two wires)	R _L < (U _V -10)/0.02 < 500 Ohm	
Accuracy at 20°C (68°F) and $U_V=24VDC$	FT3: ±0.25°C (±0.45°F)	FT6: ±0.4°C (±0.72°F)	
Temperature (passive output)			
Type of T-Sensor	please see ordering guide		
,	please see ordering guide		
Type of T-Sensor	please see ordering guide		
Type of T-Sensor ral Data	please see ordering guide 15 - 40 VDC or 24 VAC ±2)%	
Type of T-Sensor ral Data Voltage supply (U _V)			
Type of T-Sensor ral Data Voltage supply (U _V) for 0 - 10 V	15 - 40 VDC or 24 VAC ±2 28V DC > U _V > 10 + 0.02		
Type of T-Sensor ral Data Voltage supply (U _V) for 0 - 10 V for 4 - 20 mA	15 - 40 VDC or 24 VAC ±2 28V DC > U _V > 10 + 0.02	. R _L (R _L < 500 Ohm) I 4 mA	
Type of T-Sensor ral Data Voltage supply (U _V) for 0 - 10 V for 4 - 20 mA	15 - 40 VDC or 24 VAC ± 28 VDC > U _V > 10 + 0.02 for DC supply: typic	. R _L (R _L < 500 Ohm) I 4 mA I 15 mA _{eff}	
Type of T-Sensor ral Data Voltage supply (U _V) for 0 - 10 V for 4 - 20 mA Current consumption	15 - 40 VDC or 24 VAC ± 2 28V DC > U _V > 10 + 0.02 for DC supply: typic for AC supply: typic	. R _L (R _L < 500 Ohm) I 4 mA I 15 mA _{eff}	ture alternatin
Type of T-Sensor ral Data Voltage supply (U _V) for 0 - 10 V for 4 - 20 mA Current consumption Electrical connection	15 - 40 VDC or 24 VAC ± 2 28V DC > U _V > 10 + 0.02for DC supply:typicfor AC supply:typicscrew terminals max. 1.5	R _L (R _L < 500 Ohm) I 4 mA I 15 mA _{eff} Im ² (AWG 16) Humidity / Tempera	ture alternatin
Type of T-Sensor ral Data Voltage supply (U _V) for 0 - 10 V for 4 - 20 mA Current consumption Electrical connection	15 - 40 VDC or 24 VAC ± 2 28V DC > U _V > 10 + 0.02for DC supply:typicfor AC supply:typicscrew terminals max.1.5for EE10-FTx version	R _L (R _L < 500 Ohm) I 4 mA I 15 mA _{eff} Im ² (AWG 16) Humidity / Tempera	ture alternatin
Type of T-Sensor ral Data Voltage supply (U _V) for 0 - 10 V for 4 - 20 mA Current consumption Electrical connection Display	15 - 40 VDC or 24 VAC ± 2 28V DC > U _V > 10 + 0.02 for DC supply: typic for AC supply: typic screw terminals max. 1.5 for EE10-FTx version for EE10-FTx and EE10-FP	R _L (R _L < 500 Ohm) I 4 mA I 15 mA _{eff} Im ² (AWG 16) Humidity / Tempera	ture alternatin
Type of T-Sensor ral Data Voltage supply (U _V) for 0 - 10 V for 4 - 20 mA Current consumption Electrical connection Display	15 - 40 VDC or 24 VAC ± 2 28V DC > U _V > 10 + 0.02 for DC supply: typic for AC supply: typic screw terminals max. 1.5 for EE10-FTx version for EE10-Fx and EE10-FP EN61326-1	R _L (R _L < 500 Ohm) I 4 mA I 15 mA _{eff} m ² (AWG 16) Humidity / Tempera t version Humidity	ture alternatin
Type of T-Sensor ral Data Voltage supply (U _V) for 0 - 10 V for 4 - 20 mA Current consumption Electrical connection Display CE compatibility according	15 - 40 VDC or 24 VAC ± 2 28V DC > U _V > 10 + 0.02 for DC supply: typic for AC supply: typic screw terminals max. 1.5 for EE10-FTx version for EE10-FX and EE10-FP EN61326-1 EN61326-2-3	R _L (R _L < 500 Ohm) I 4 mA I 15 mA _{eff} m ² (AWG 16) Humidity / Tempera version Humidity : -555°C (23131°F)	ture alternatin

1) Please refer to the working range of the HC103

2) Other T-scaling refer to page 146



Features


excellent price / performance ratio easiest installation modern design long term stable optional display traceable calibration

Connection Diagram

Dimensions (mm)

W x H x D = 85 x 100 x 26mm (3.3 x 3.9 x 1")

Housing:	PC
Protection class:	IP30

Housing colour:	Cover:	RAL 9003 (signal white)
	Back:	RAL 7035 (light grey)

Order Example

EE10-FT3-D04-T04

Model: Output humidity: Output temperature: Display: T-Unit: T-Scale: humidity + temperature 0-10V 0-10V with display °C 0...50°C

Ordering Guide_

MODEL		OUTPU	Г	T-SENSOR (only passive)		DISPLAY		T - UNIT (only for (D04))		T-SCALE (only for FT)	
humidity + temperature humidity humidity + temperature passive	(FT) (F) (FP)	0-10V 4-20 mA	(3) (6)	Pt 100 DIN A Pt 1000 DIN A	(A) (C)	without display with display	() (D04)	°C °F	() (E01)	050 -555 040 other	(T04) (T31) (T55) (Txx)
EE10-											

ELEKTRONIK®

Features

EE08

EE08 Series

High-Precision Miniature Humidity / Temperature Transmitter

Accurate humidity / temperature measurement over a wide working range, fitted in a small-sized housing and high flexibility have been the main goals for the development of the EE08 series.

Low power consumption and short start-up time support efficient energy management for battery operated systems. For this application an additional version (V10) with supply voltage 4.5-15V DC has been developed.

Calibration data and other relevant functions like linearization or temperature compensation are stored in the probe. This feature, together with the optional connector, allows for easy replacement of the probe without a need for re-adjustment of the reading device (interchangeability).

The humidity and temperature measurement are available as analogue outputs (0-1/2.5/5V) and as a digital interface (E2-interface). Easy implementation and data processing is warranted.

Humidity and temperature reading can be re-adjusted using the calibration software; available as an accessory.

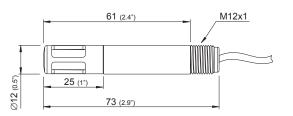
Typical Applications

meteorology / weather stations humidity / temperature data logging incubators fermentation chambers green houses snow machines dry storage facilities small dimensions wide working range, high accuracy traceable calibration customer adjustment possible interchangeable in seconds low power consumption / short start-up time analogue outputs / digital interface

Technical Data _

Measuring values

Relative Humidity	
Sensor	HC101
Working range ¹⁾	0100% RH
Digital output (2 wire) ²⁾	output value: 0.00100.00% RH
Analogue output 0100% RH	0-1/2.5/5/10V -0.2mA < I∟ < 0.2mA
Accuracy at 20°C (68°F) and 10/24V DC	±2% RH (090% RH) ±3% RH (90100% RH)
	Traceable to intern. standards, administrated by NIST, PTB, BEV
Temperature dependence	typ. 0.03% RH/°C (typ. 0.02% RH/°F)
Temperature	
Sensor	Pt 1000 (DIN A)
Digital output (2 wire) ²⁾	output value: -40.00+80.00°C (-40176°F)
Analogue output	0-1/2.5/5/10V -0.2mA < I _L < 0.2mA
Accuracy at 10/24V DC	Δ°C 0.5 0.4 0.2 0.1 0 -0.1 -0 -0.1 -0 -0.1 -0 -0.2 -0.1 -0 -0.1 -0 -0.1 -0 -0.1 -0 -0.2 -0.0


General

Supply voltage	output 0-1V / 0-2.5V output 0-5V	4.5-15V DC or 7-30V DC 7-30V DC	
	output 0-10V	12-30V DC	
Current consumption	typ. < 1.3mA		
Digital interface	E2-interface level = 3.3	V / ±0.1V	
Housing	polycarbonate / IP65		
Sensor protection	metal grid filter		
Electromagnetic compatibility	EN61326-1 EN61326-2	2-3	((
	Industrial Environment		
Temperature ranges	working temperature: -408	30°C (-40176°F)	
	storage temperature: -408	0°C (-40176°F)	
1) refer to the working range of the humidtiy sensor HC101	 serial protocol refer to www.epluse.cor 	n	

Dimensions (mm)

EE08 with cable (Type E)

Connection Diagram

Type E:

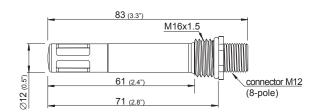
T-passive

T-passive

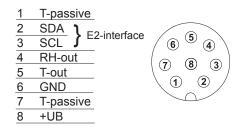
GND

T-out

+UB


RH-out

Temp. active Temp. passive, 4-wire white (not connected) white, black blue (not connected) blue, violet pink pink grey grey (not connected) vellow yellow SCL SDA E2-inferface green green


brown

red

EE08 with connector (Type D)

Type D:

Ordering Guide

HOUSING	MODEL	OUTPUT	SUPPLY	T-SENSOR (passive, 4-wire)	TYPE
polycarbonate (P)	humidity active / temperature active (FT) humidity active / temperature passive(FP)	$\begin{array}{ccc} 0 - 1V^{1)} & (1) \\ 0 - 2.5V^{1)} & (7) \\ 0 - 5V^{2)} & (2) \\ 0 - 10V^{2)} & (3) \end{array}$	4.5 - 15V DC (V10) 7 - 30V DC (V11)	Pt 100 DIN A (A) Pt 1000 DIN A (C)	with connector (D) with cable (E)
EE08-					

1) possible with supply 4.5 - 15V DC (V10) or 7 - 30V DC (V11) 2) possible with supply 7 - 30V DC (V11) only

brown

red

FILTER	COATING	CABLE LENGTH (Type E only)	T-SCALING	
metal grid filter (6)	without coating (no co with coating (HC		-4080 (T22) -4060 (T02) -3070 (T08) -2080 (T24) -2050 (T48) other (Txx)	

Order Example

EE08-PFT2V11E602T22

housing: polycarbonate model: output: 0 - 5V 7 - 30V DC supply: with cable type:

humidity active / temp. active

filter: coating: cable length: T-scaling:

metal grid filter without 2m (6.6ft) -40...80°C (-40...176°F)

Accessories / Replacement Parts

- M12 connection cable for type D, length 1,5m (5ft) (HA010322)

- M12 connection cable for type D, length 3m (10ft) (HA010323)
- M12 connection cable for type D, length 5m (16.4ft) (HA010324)
- M12 connection cable for type D, length 10m (32.8tt) (HA010325)
- E2-interface RS232 converter (incl. calibration software)
- for testing purposes and customer adjustment (HA011005)
- radiation shield
- (HA010506) - M12 female socket with wires (HA010703)
- M12 female cable connector assembly possible (HA010704)
- metal grid filter

ELEKTRONIK®

EE06 Series

Small Size Humidity / Temperature Transmitter for OEM Applications

The analogue humidity output provides according to model type, a current signal with 4-20mA or a voltage signal with 0-1V. A passive temperature output signal is available for both versions.

The voltage version can be ordered also with an active output.

Wide temperature and supply voltage ranges, excellent long term stability and the optional sensor coating allow the use in many applications.

Typical Applications_

stables green houses humidifiers and dehumidifiers monitoring of storage rooms very small dimensions excellent price/performance ratio very good long term stability easy installation optional sensor coating

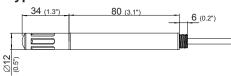
Features

Technical Data

easuring values Relative humidity	EE06-x1 (voltage output)	EE061-x6 (current output)
Sensor	HC101	HC105
Working range ¹⁾	0100% RH	0100% RH
Analogue output 0100% RH		420mA (two wire) R _L <500Ohm
Accuracy at 20°C (68°F), 12V DC	±3% RH (1090% RH)	±3% RH (1090% RH)
	±5% RH (<10% RH and >90% RH)	±5% RH (<10% RH and >90% RH)
Temperature dependence [% RH/°C]	model F/FT: -0.00035 x RH x (T-20°C) model FP: typ. (-0.003 x RH + 0.01) x (T-20°C)	model F/FP: typ. ±0.03
Temperature active		
Sensor	Pt1000 (class A, DIN EN 60751)	
Analogue output -4060°C (-40140°F)	0-1 V -0.2 mA < I _L < 0.2 mA	
Accuracy at 12V DC, 20°C (68°F)	±0.3°C (±0.5°F)	
Temperature passive		
Output	resistive, 2 wire	resistive, 4 wire
Type of T-Sensor	refer to ordering guide	refer to ordering guide
eneral		
Supply voltage	4.5V DC - 30V DC	9V DC - 28V DC
Current consumption	typ. 1.5 mA	
Electrical connection	cable with 0.5m (1.6ft) or 3m (9.8ft)	cable with 0.5m (1.6ft) or 3m (9.8ft)
Housing	polycarbonate / IP65 in vertical mounting	polycarbonate
	(filter cap upside)	IP65
Sensor protection	membrane filter, metal grid filter	membrane filter, metal grid filter
Electromagnetic compatibility	EN61326-1	EN61326-1
	EN61326-2-3	EN61326-2-3
Temperature ranges	working temperature: -4060°C (-40140°F)	working temperature: -4060°C (-4014
	storage temperature: -4065°C (-40149°F)	storage temperature: -4070°C (-40158

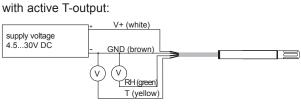
1) Refer to the working range of the humidity sensor

v2.4


Dimensions (mm)

EE06-x1 (voltage output)

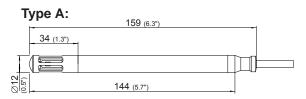
Type A:


Type C:

Connection Diagram

with passive T-sensor:

EE06-x1 (voltage output):


V+ (white)

GND (brown)

V RH (green)

Tpassive1 (yellow) Tpassive2 (grey)

EE061-x6 (current output)

with active humidity output: V+ (white) Ш supply voltage 9...28V DC A RH (brown) with passive T-sensor: V+ (white) UΠ supply voltage 9...28V DC A RH (brown) Tpassive1 pink Tpassive2 red Tpassive3 blue Tpassive4 grey

EE061-x6 (current output):

Ordering Guide

supply voltage 4.5...30V DC

Voltage Output:

-	, 1		•				
	MODEL	OUTPUT	T-SENSOR (passive only)	TYPE	FILTER	COATING	CABLE LENGTH
	humidity + temperature(FT)humidity(F)humidity+temperature passive(FP)		Pt 100 DIN A (A) Pt 1000 DIN A (C) NTC 10K at 25°C (E)	with housing (A) with thread (C)	membrane filter(1) metal grid filter (6)		0.5m (1.6ft) (co code) 3m (9.8ft) (K300)
	EE06-						

Current Output:

MODEL	OUTPUT	T-SENSOR (passive only)	FILTER	COATING	KABELLÄNGE	
humidity (F) humidity+temperature passive (FP)	4 - 20mA (6)	Pt 100 DIN A (A) Pt 1000 DIN A (C) NTC 10K at 25°C (E)	membrane filter (1) metal grid filter (6)	without coating (no code) with coating (HC01)	0.5m (1.6ft) (co code) 3m (9.8ft) (K300)	
EE061-						

Order Example_

EE061-FP6A6HC01K300

model:	humidity+t
output:	4 - 20mA
T-sensor:	Pt 100 DI

humidity+temperature passive 4 - 20mA r: Pt 100 DIN A filter: metal grid filter coating: with coating cable length: 3m

Accessories

For more information please refer to data sheet "Accessories"

EE02 Series

High-Precision Thermo - Hygrometer

The new hygrometer EE02 is the combination of high accuracy measurement technology with modern design. The relative humidity and temperature values with trend indication are alternating on the large display.

High quality E+E sensor technology and state of the art microprocessor based electronics result in highest accuracy and long term stability. The very low power consumption allows battery operation and independence from external power supply. The standard batteries, replaceable by the user, have a life time about 5 years.

The modern housing concept makes the wall mounting very easy. EE02 can be used as bench mount as well, the free standing kit is included in the scope of supply.

EE02 is available upon request as OEM thermo - hygrometer with your company logo.

Typical Applications_

climate monitoring for:

- office spaces
- private areas
- laboratories
- food stores
- gift article

Technical Data_

Measuring Quantities

Relative Humidity		
Humidity sensor type	HC103	
Working range ¹⁾	1095% RH	
Resolution	0.1% RH	
Accuracy at 20°C (68°F)	±2% RH (4060% RH) ±3% RH (1095% RH)	
	Traceable to intern. standards, administrated by NIST, PTB, BEV	
Trend indication	yes	
Temperature active		
Working range	-555°C (23131°F)	
Resolution	0.1°C	
Accuracy at 20°C (68°F)	±0.3°C (±0.54°F)	
Trend indication	yes	
General Data		
Sampling rate	10s	
Current supply	2x 1.5V AAA Alkali battery (included in the scope of supply)	
Battery life time	typ. 5 years	
Display	°C or °F (selectable by jumper)	
CE compatibility according	EN61326-1	' C
	EN61326-2-3	. 🔪
Temperature ranges	Working temperature range: -555°C (23131°F)	
	Storage temperature range: -2060°C (-4140°F)	
Dimensions	85 x 100 x 26 mm (3.3 x 3.9 x 1")	
Housing / protection class	PC, IP20	
1) Please refer to the working range of the HC		

1) Please refer to the working range of the HC103

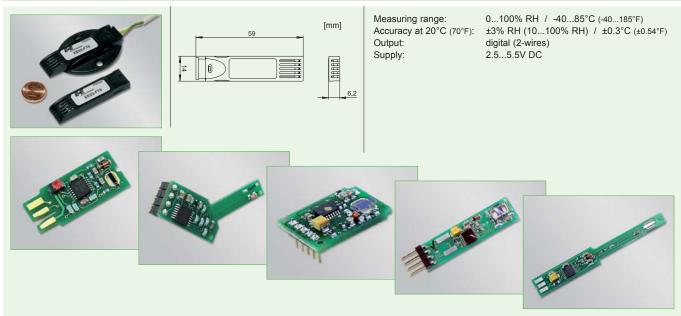
Ordering Guide_

MODEL

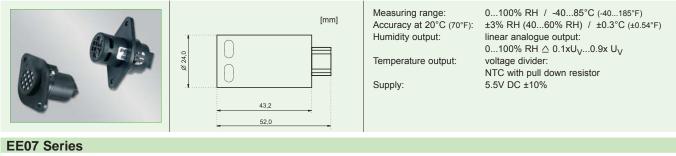
EE02 with E+E logo	(EE02-FT01)
EE02 without E+E logo	(EE02-FT01) (EE02-FT01-L01
	A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT.

Features

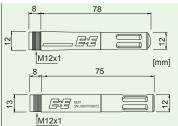
easiest mounting modern design highest accuracy traceable calibration long battery life time available as OEM meter


OEM Products

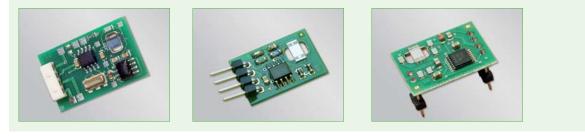
E+E Elektronik is your reliable partner for customised OEM products in sensor technology for measurement of humidity, dew point, air velocity, CO_2 and temperature. We develop and produce your customer-specific solutions - from simple sensor elements to complete transmitters.


You can save time if you come to us with your requirements. Our team of experts can fall back on a host of existing solutions and therefore development time can be kept to a minimum.

Our knowhow in product design and calibration helps you to avoid expensive investments and brings your product to the market faster. Our longtime experience as an automotive supplier guarantees the best product quality and reliability.


EE03 Series

EE04 Series



Measuring range: Accuracy at 20°C (70°F): Output: Supply: Housing: 0...100% RH / -40...80°C (-40...176°F) ±2% RH (0...90% RH) / ±0.3°C (±0.54°F) digital (2-wires) 3.8...5.5V DC polycarbonate or stainless steel

Example pictures of customised products

EE99-1 Series

OEM - Humidity / Temperature Modules

The EE99-1 OEM - RH/T modules are designed to meet the specific requirements of RH/T monitoring in climate chambers.

High-end E+E humidity sensor elements of the HC series and accurate temperature compensation of the humidity reading result in an excellent accuracy over a broad measurement range.

The analogue output for relative humidity is 4 - 20mA / 3-wire. The passive temperature output can be connected via 3-wire to an external readout.

Easy mounting and service is possible with a plug-in screw terminals block and by push buttons for field calibration.

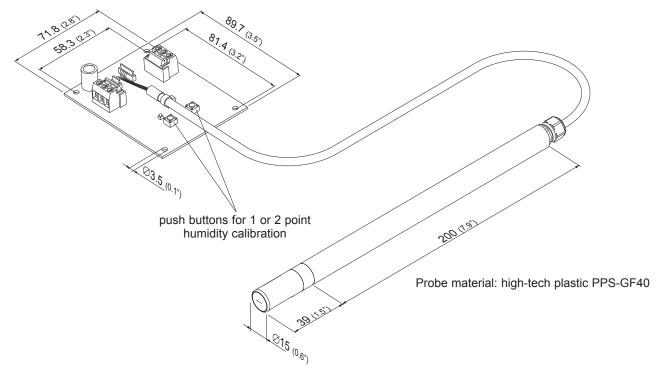
Sensor Coating

Operation in heavily polluted and/or corrosive environments is typical for many industrial processes and can lead to drift or damage of the humidity sensor and therefore to incorrect measurements. The unique protective coating developed by E+E for the sensing probe (ordering code: - HC01) means a significant improvement of the long-term stability of the transmitter in very dirty and aggressive environments.

Typical Applications_

Features

EE99-1


climate chambers drying chambers drying chambers working range temperature -50...180°C (-58...356°F) / up to 200°C (392°F) short term passive 3-wire temperature output easy field calibration

Technical Data_____

Measured quantities Relative humidity	
Humidity sensor ¹⁾	HC1000-400
Working range	0100% RH
Accuracy incl. hysteresis and nonlinearity with - special calibration against certified standards - standard calibration	±1% (090% RH) ±2% (90100% RH) ±2% (090% RH) ±3% (90100% RH) Traceable to intern. standards, administrated by NIST, PTB, BEV
Output signal	4 - 20mA (3-wire)
Response time with filter at 20°C (68°F) / t ₉₀	< 15 sec.
Temperature	
Temperature sensor element ²⁾	Pt100 resp. Pt1000 (class A, DIN EN 60751) see Ordering Guide
Working range	-50180°C (-58356°F) / up to 200°C (392°F) short term
General Data	
Supply voltage	10 - 35V DC or 10 - 28V AC
Load resistor for 4 - 20 mA output	10 - 35V DC $R_L < \frac{U_V - 5V}{0.02 \text{ A}}$ [Ω] (max. 350 Ω)
	10 - 28V AC R _I < 350 Ω
Current consumption	for DC supply < 32mA for AC supply < 60mA _{eff}
Working temperature range electronics	-4060°C (-40140°F)
Storage temperature range	-4060°C (-40140°F)
Electrical connection	pluggable screw terminals up to max. 1.5mm ² (AWG 16)
Sensor protection	stainless steel grid filter
Electromagnetic compatibility	Designed for installment in and with other equipment (OEM) Measurements according to EN61000-4-3 and EN61000-4-6 FCC Part15 ClassB ICES-003 ClassB
1) Refer to the working range of the humidity sensor	2) max. power dissipation 1mW

Mounting Dimensions (mm)

Connection Diagram

Ordering Guide_

MODEL	OUTPUT	T-SENSOR	VERSION	FILTER	CABLE LENGTH	
Humidity + Temperature passive (FP)	4 - 20 mA (6)	Pt100 DIN A (A) Pt1000 DIN A (C)	remote sensing probe (D)	stainless steel grid filter (8)	2m (6.6ft) (02) 5m (16.4ft) (05) 10m (32.8ft) (10)	
EE99-1-						

PROBE LENG	TH	SENSOR COATING		
200mm (7.9")	(5)	without coating () with coating (HC01)		

Order Example

EE99-1-FP6AD8025

Model: Output: T-Sensor: Version: Filter: Cable length: Probe length: Coating sensor: Humidity + Temperature passive 4 - 20mA Pt100 DIN A remote sensing probe stainless steel grid filter 2m (6.6ft) 200mm (7.9") without coating

Accessories_

Metal grid filter (HA010108)

HUMIMAP 20 Series

for measurement of relative humidity, temperature, dew point, absolute humidity…

Accurate monitoring of the humidity and temperature profile in a climatic chamber is increasingly important for quality assurance systems becoming more and more stringent. The multi-channel measuring system HUMIMAP 20 is an optimal solution to comply with these requirements.

The modular design of the system can easily be customized and warrants a cost effective solution to monitor the humidity and temperature profile and the occurring changes over time.

In addition to the relative humidity and temperature the HUMIMAP 20 can calculate and output related psychometric values, like dew point temperature, mixing ratio, absolute humidity etc.

The measured values are available on the serial RS232 interface and on the freely configurable and scaleable analogue output on the front and back side of the HUMIMAP 20.

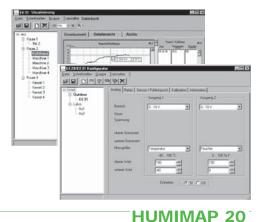
Multi-channel measuring system

Modular design_

HUMIMAP 20 consists of single plug-in modules, which can be grouped together (max. 5 modules) in a 19" rack.

The modules are networked, even with modules in several other racks, to allow building a system for processing up to max. 32 measurement channels.

Software_


Configuration software:

The user friendly configuration software is included in the scope of supply. It allows easy setup and customizing of the measurement system, such as the number of channels, assignment and scaling of analogue outputs, calibration, etc.

Data logging and analysis software:

Measurement data can be saved and processed by using the data logging und visualisation software.

Data can be displayed in graphs or tables, alarm levels set and alarm signals sent by email or SMS.

Functions HUMIMAP 20

measurement of relative humidity and temperature
calculated values h, r, dv, Tw, Td, Tf, e
expandable up to 32 channels (also later on)
two freely scaleable and configurable analogue outputs per plug-in module
remote sensing probe up to 20m (66ft), interchangeable
on-site adjustement for relative humidity and temperature
LED indication of status
local displays, selectable measurand incl. MIN/MAX indication
configuration and data output via RS232 interface
configuration software
data logging and analysis software

Interchangeable sensing probe _____

The HUMIMAP 20 sensing probes have a maximum cable length of 20m (66ft) and a quick connector.

The configuration software allows easy probe replacement without the need of recalibration.

A metal grid filter, specially designed for high humidity (even condensation) and high temperature, protects the sensor elements against mechanical stress and pollution.

Calibration and adjustment of plug-in modules_

An adapter PCB allows easy calibration of an entire measurement loop (sensing probe, plug-in module, rack, data logging and analysis software) without interruption.

Using push buttons on the plug-in module the user can easily perform an one or two point adjustment of humidity and temperature. The adjustment can be done by using the standard configuration software.

push-buttons for humidity / temperature calibration adapter PCB

Scope of Supply_____

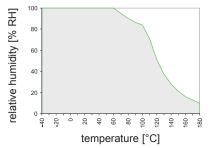
- 19" housing with plug-in module, power supply and RS485 to RS232 converter
- manual
- power cable
- RS232 cable
- RS485 uplink cable
- RS485 Y-splitter
- replacement fuse
- CD with configurator software
- CD with logger- and visualisation software
- CD with datasheet, manual and demo

- adapter PCB

- 19" plug-in module(s) according to order code
- calibration certificate
- 2mm plugs for analogue outputs on

front side

- M12 connector for analogue outputs on back side


Technical Data _

Measuring values

Relative humidity							
Humidity sensor ¹⁾			1000-400				
Working range ¹⁾			100% RH				
Accuracy *) (including hysteresi					irds, administrated	l by NIST,	PTB, BE
-1540°C (5104°F)	≤90% RH		.3 + 0.3%*ı	mv) % RH			
-1540°C (5104°F)	>90% RH		3% RH				
-2570°C (-13158°F)			.4 + 1%*m				
-40180°C (-40356°F)			.5 + 1.5%*ı				
Temperature dependence of			± 0.01% R				
Temperature dependence of	sensing probe	typ.	$\pm (0.002 + 0.002)$	0.0002 x RI	H[%]) x ∆T [°C]	ΔT :	= T - 20°C
Response time with metal gr	id filter 20°C (68°F) / t ₉₀	< 1	วิร				
Temperature							
Temperature sensor element		Pt1	000 (Tolera	nce class /	A, DIN EN 60751	1)	
Working range sensing head			180°C (-40			,	
Accuracy		∆°C 0.6 ⊓	,	,			
		0.5 —				1	
		0.4 -					
		0.2					
		0.1 -					
		0	30 -20 -10 0 10 20	30 40 50 60 70 80	90 100 110 120 130 140 150 160 170	°C	
		-0.1		_			
		-0.3					
		-0.4 —					
		-0.5					
Temperature dependence of	alaatraniaa	turo		1°C			
	electronics	typ.	± 0.005°C/	C			
puts Digital output		RS2	222				
Two freely selectable and scal	eable analogue outputs ²⁾	0 - 1	5V / 0 - 10\	/	-1mA < I _L < 1m.	Δ	
			20mA / 0 - 2		R _I < 500 Ohm		
. adjustable measurment r	ange ²⁾³⁾	fron	า	up to	L	units	
Humidity	RH	0		100		% RH	
Temperature	T	-40	(40)	180	(356)	°C	(°F)
Dew point temperature	Td	-80 (-		100	(212)	0°C	(°F)
Frost point temperature	Tf	-80 (-		0	(32)	0°	(°F)
Wet bulb temperature	Tw			100	. ,	0°	(°F) (°F)
Water vapour partial pressure	IW	0	(32)		(212)		
Mixture ratio	e	0	(0)	1100	(15) (9999)	mbar	(psi)
Absolute humidity	· · · · · · · · · · · · · · · · · · ·		(0)				(gr/lb)
	dv h	0	(0)	700	(300)		(gr/f ³)
Specific enthalpy	11	U	(0)	2800	(999999)	kJ/kg	(01/10)
eral		00	2501/ 40 /				
Supply voltage			.250V AC (oprial interface		
System requirements for soft	ware				serial interface		
Sensor protection	of all atmains		al grid filter		U (356°F)		
Operating temperature range	of electronics		+50°C (-4.				
Storage temperature range			+60°C (-40	0140°F)			
Electromagnetic compatibility	according to		61000-6-2		EN61000-6-4		C
			51010-1				
Display					x32 pixels), with		
					g parameters and		AX functi
Dimensions		463	x 150 x 36	2mm (18.2	x 6 x 14.3") (W X h	x d)	
1) Refer to working range of the humidity s	ensor! 2) Can be easily cha	nged by so	oftware.	3) F	Refer to accuracies of cal	culated value	S.

2) Can be easily changed by software.

Working range humidity sensor_

The grey area shows the allowed measurement range for the humidity sensor.

Operating points outside of this range do not lead to destruction of the element, but the specified measurement accuracy cannot be guaranteed.

Ordering Guide_

						HUMIMAP20-
Hardware Configuration						
Number of plug-in modules	1 piece					01
1.3	2 pieces					02
	3 pieces					03
	4 pieces					04
	5 pieces					05
Cable length	2m (7ft)					02
-	5m (16ft)					05
	10m (33ft)					10
	20m (66ft)					20
Probe length	65mm (2.5")					2
Coating sensor	no					
-	yes					HC01
Software Configuration						Colort consuling to
Physical	Relative Humidity	RH	[%]	(A)	output 1	Select according to
parameters of	Temperature	Т	[°C]	(B)		ordering guide (A - H,J
outputs	Dew point temperature	Td	[°C]	(C)	output 2	Select according to
outputo	Frost point temperature	Tf	[°C]	(D)	output 2	ordering guide (A - H,J
	Wet bulb temperature	Tw	[°C]	(E)		
	Water vapour patial pressure		[mbar]	(F)		
	Mixture ratio	r	[g/kg]	(G)		
	Absolute humidity	dv	[g/m ³]	(U) (H)		
	Specific enthalpy	h	[kJ/kq]	(J)		
Type of	0-5V		[(•)		2
output signal	0-10V					3
earbar erginal	0-20mA					5
	4-20mA					6
Measured value units	metric / SI					
	non metric / US					E01
Scaling of T-output	-4060 (T02)		-20100	(T14)		Select according to
Scaling of Td-output	-1050 (T03)		+20120	(T15)	output T	ordering guide (Txx)
in °C or °F	050 (T04)		0120	(T16)	- stpart i	ordening guide (TXX)
	0100 (T05)		080	(T21)		Select according to
	060 (T07)		-4080	(T22)	output Td	ordering guide (Tdxx)
	-3070 (T08)		-2080	(T24)		e. acting galao (Taxx)
	-30120 (T09)		-40160	(T33)		Other T and Td-scaling
	-20120 (T10)		+20180	(T40)		refer to page 146
	-40120 (T12)		-40180	(T52)		.c.c. to page 140

Order Example____

HUMIMAP20-02052HC01/AB6-T07

Number of plug-in modules:	2 pieces
Cable length:	5m
Probe length:	65mm
Coating sensor:	yes

Output 1: Output 2: Type of output signal: 4-20mA Measured value units: metric / SI Scaling of T-output:

relative humidity temperature 0...60°C

Accessories / Replacement Parts (For further information, see data sheet "Accessories")

- replacement probe (Pxx)

- OEKD-certificate

HUMIMAP 20

ELEKTRONIK[®] Ges.m.b.H.

Data Logger

HUMLOG 10

HUMLOG 10 series humidity/temperature data loggers permit the exact and professional recording of humidity and temperature values. Low power consumption and large memory size enable long-term data capture for a wide range of applications. The HUMLOG 10 can be configured very easily by means of the included software. Alarm thresholds for humidity and temperature, as well as the start time for recording, can be freely set by the user.

The 3 available HUMLOG 10 models allow optimum adaptation to any requirements.

HUMLOG 10 / HUMLOG 10TSE

The elegant 2-part housing, which consists of a display module and a plug-in sensor module, enables easy installation and a fast exchange of the sensor unit when service is required.

The current measurement data on the large display is easy to read even from a distance of several metres. Relative humidity (% RH) and temperature (°C or °F) are constantly displayed. Clock time (format hh:mm) and date (format dd.mm) are displayed in an alternating sequence. Likewise, the display also indicates alarm conditions, recording, record stop, and programmed record start.

In the basic version of the HUMLOG 10, the sensors are integrated in the sensor module. The HUMLOG 10TSE version is equipped for the connection of sensing probes. According to requirements, the two channels can be selectively connected to a combination H/T sensing probe or to 2 T sensing probes. The sensing probes can be separated; maximum distance: 8 m. The optional Professional Version of the SmartgraphTM2 software enables the control of 2 combined H/T sensing probes.

HUMLOG 10THC

The compact HUMLOG 10THC version does not have a display and is equipped with internal H/T sensors.

Measurement Data - Evaluation & Configuration

Measurement data evaluation, instrument configuration and 1 point humidity and temperature calibration can be conveniently performed via the serial RS232 interface with a PC or notebook computer by means of the SmartgraphTM2 software, which runs under MS WindowsTM.

SmartgraphTM2 can display the recorded measurement data in graphical form or as a table. The layout of the display can be individually configured by the user.

The optional Professional Version of Smartgraph ${}^{\rm TM2}$ also permits the

display of dewpoint and absolute humidity, the export of measured values (e.g., for

evaluation by means of MS Excel[™]), and the control of 2 combined H/T sensing probes.

> Utilizing the SmartGraph[™]2 "21 CFR 11" software allows the use in applications in the pharmaceutical and food industries.

Humidity / Temperature

HUMLOG 10TSE with RH/T probe

HUMLOG 10TSE with 2 T probes

HUMLOG 10THC

Typical Applications

museums and exhibition spaces clean rooms green houses warehouses data memory for 120,000 values large format display easy installation and service user friendly data evaluation via PC-software

Technical Data _____

nsing probe				
Model	external RH/T or T		internal RH/T	
Dimensions	RH/T-probe: length Ø14mm (Ø0.6")	i outiitti (3.1″),		
	T-probe: length 50	mm (1 9")		
	Ø6mm (Ø0.2")			
Max. cable length	8m (26.2ft)			
asuring data	RH/T probe exte	ernal	RH/T probe internal	
Relative humidity			•	
Sensor type	capacitive - HC100	0	capacitive - HC103	
Measuring range		condensing)		
Accuracy		6,		
Resolution				
Temperature				
Sensor type	NTC		NTC	
Measuring range	-3070°C (-22158°	°F)	-2050°C (-4122°F)	
Accuracy	±0.2°C (0.36°F) at -20	50°C (-4122°F)	±0.3°C (0.54°F) at 040°C (32	.104°F)
	±0.5°C (0.9°F) at -30	50°C (-4122°F))70°C (-22158°F)	±0.5°C (0.9°F) at -2050°C (
Resolution		, , , , , , , , , , , , , , , , , , ,		
Temperature	T probe externa	1		
Sensor type	NTC			
Measuring range	-40100°C (-4021	2°F)		
Accuracy	±0.2°C (-2050°C) / ±0.36°F (-4122°F)		
-) / ±0.72°F (-40158°F)		
		1.8°F (>158°F)		
Resolution	0.1°C (0.18°F)			
neral				
Supply voltage	3.6V lithium batter	<u>y</u>		
Battery lifetime	typical 2 years (wit	h a sample rate of 1mir	1)	
Internal memory size	60,000 measured		0,000 values)	
Sampling interval	1/10/30sec, 1/10/3			
Logging interval				
Serial Interface	RS232; USB			
Working temperature range	housing:	-2050°C (-4122°F		
CE compatibility according	EN50081-2	EN50082-2	EN55011	(
Llouging (protection close	EN61000-4-2	EN61000-4-3		
Housing / protection class Dimensions (WxHxD)	ABS / IP40	7 4 0 4 0"		0.450.420.000
Dimensions (WXHXD)	120x110x30mm (4.	7x4.3x1.2°)	resp. HUMLOG 10THC: 12	0X50X501111 x16.4x1.2")
Weight	250g (0.55 lbs)			,
Display	I C display 65x40r	$nm (2.6 \times 1.6^{\circ})$	(only HUMLOG 10 / HUMLO	OG 10TSE

SmartGraph[™]2 PC-Windows[™]-Software for set-up and data presentation

Ordering Guide _

MODEL	EXTERNAL PROBE (for HUMLOG 10TSE	ACCESSORIES
	RH/T - probe with 2m (6.6ft) cable(HA030201)T - probe with 2m (6.6ft) cable(HA030202)cable extension 2m (6.6ft)(HA030203)	SmartGraph™2 Professional(HA030301)SmartGraph™2 21 CFR 11(HA030304)3.6V lithium battery(HA030102)sensing module f. Humlog 10(HA030103)sensing module f. Humlog 10TSE(HA030105)theft-proof installation kit(HA030104)

HUMLOG 10

Features

EE36 Series

Transmitters for Moisture Content in Oil

E+E Transmitter Series EE36 are specially designed for the measurement of water content in oil. They are certified in accordance with the regulations of the "Germanischen Lloyd (GL)" and therefore can be utilized in the maritime field as well. The Series EE36 is ideal for online monitoring of moisture in lubrication or insulation oil, which is very important for the long-term performance and adaptive maintenance of plant and machinery. For instance, moisture affects dramatically the insulation characteristics of electrical transformer oil and therefore continuous monitoring is extremely important.

Humidity measurement in oil

Similar to the humidity in the air, the water content in an oil can be described by the absolute value in ppm or by the relative value a...

- ppm (mass of water / mass of oil) - a_w
 - (actual water content as fraction of the water content in the saturated oil)

EE36 + Ball valve set

 $a_w = 0$ corresponds to water-free oil, while $a_w = 1$ describes fully saturated oil. a_w measurement with EE36 transmitter series is based on the outstanding long term stability and resistance to pollution of the E+E capacitive sensor elements series HC.

Product Versions

The physical quantities measured are water activity aw and temperature T. With these quantities EE36 calculates the water content (ppm) in mineral transformer oils. Calculation of water content in non-mineral transformer oils and lubrication oils can be accomplished by downloading specific parameters of the oil. The measured and the calculated values are available on two free scaleable and configurable analogue outputs. In addition, an optional relay output can be used for alarms and process control.

Installation

The sensing probe is designed for inline monitoring and can be placed directly in the oil, at pressures up to 20bar (300psi). In addition to direct mounting of the sensing probe, a ball valve installation provides mounting and removal of the probe without interrupting the process.

Easy Calibration and Adjustment of EE36

The user can easily readiust or calibrate the transmitter by using either a simple procedure with two push buttons on the printed circuit board or the configuration software.

Software Tools_

The configuration software is included in the scope of supply and allows an easy and fast configuration of the analogue outputs and of the alarm and control thresholds. Further features of the configuration software are adjustment and calibration of the outputs and service operations such as replacement of the sensing elements or of the entire sensing probe.

Features of EE36_

Measurement of a _w and T at pressure up to 20bar (300psi)	\checkmark
Calculation of water content in ppm for mineral transformer oil	\checkmark
Two free scaleable and configurable analogue outputs	\checkmark
Probe cable length up to 20m (66ft)	\checkmark
Easy on site adjustment and calibration of a and T outputs	\checkmark
Easy on site adjustment and calibration of a _w and T outputs LED indication for operation and sensing probe status	\checkmark
User configuration of the instrument with PC via RS232 interface	\checkmark
Configuration software	\checkmark
Display of a _w , T and water content with MIN/MAX function	optional
Two free configurable relays outputs	optional
Replaceable sensing probe	optional
Connector for power supply and outputs	optional

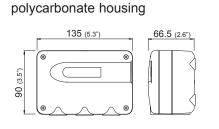
Integrated power supply_

A power supply, integrated in the back module of the housing, can be ordered optionally (100...240V AC, 50/60Hz; ordering code V01). The power supply V01 is available for both polycarbonate and metal housing and comes standard with two plugs for supply and outputs to allow an easy connection.

Housing Dimensions (mm) _

Housing:

Model:

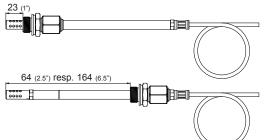

32 (1.3")

0000

(0.47"

012

Ø13 (0.51")


135 (5.3") 66.5 (2.6") 66.5 (2.6")

For use in harsh industrial environments the EE36 series is available in a robust metal housing.

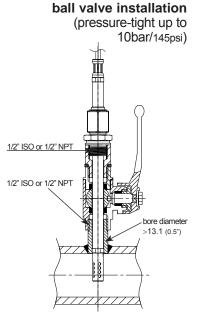
EE36-xEx

metal housing

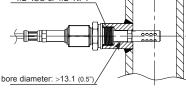
Remote probe for T -40...180°C (-40...356°F) and pressure-tight up to 20bar (300psi) probe material: stainless steel

code "cable length"

15 (0.59")

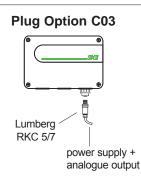

咱间

code "probe length"


minimum installation depth

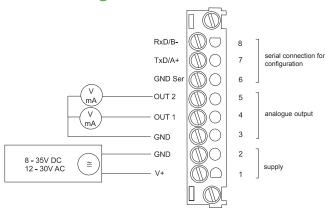
maximum installation depth

Installation Example



fixed installation (pressure-tight up to 20bar/300psi)

Connection Versions


Plug Option C06

Plug Option C07

power supply + analogue output

Connection Diagram

2x M16x1.5

Terminal configuration - Alarm output

RS232

Technical Data _

Water activity Water activity sensor ¹⁾	HC1000-400
Mater activity sensor Measuring range ¹⁾	01 a _w
	bility, traceable to intern. standards, administrated by NIST, PTB, BEV.
-1540°C (5104°F) ≤0.9 a _w	$\pm (0.013 + 0.3\%$ mv) a _w
-1540°C (5104°F) ≥0.9 a _w	$\pm 0.023 a_{\rm w}$
-1540 C (5104 F) -0.9 a _w -2570°C (-13158°F)	$\pm (0.014 + 1\% \text{mv}) a_w$
-2070 C (-13138 F) -40180°C (-40356°F)	$\pm (0.014 \pm 1.60(10)) a_W$
	$\pm (0.015 + 1.5\% \text{mv}) a_w$
Temperature dependence of electronics	typ. $\pm 0.0001 [1/°C]$ (typ. $\pm 5.6 \times 10^{-5} [1/°F]$)
Temperature dependence of sensing probe	typ. $\pm (0.00002 + 0.0002 \times a_w) \times \Delta T [^{\circ}C]$ $\Delta T = T - 20^{\circ}C$
Response time with stainless steel filter at 20°C / t ₉₀	typ. 10min in still oil
Temperature	Dialogo (talagana alaga A. DIN EN 60764)
Temperatur sensor element	Pt1000 (tolerance class A, DIN EN 60751)
Working range sensing probe	-40180°C (-40356°F)
Accuracy A°	°C 0.6 0.5
	0.4 -
	0.3
	0.1 —
	○
	-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
	-0.2 -
	-0.3
	-0.4 -
	-0.5 -
	L _{6.0-}
Temperature dependence of electronics	typ. ± 0.005°C/°C
Itputs ²⁾	typ. ± 0.003 C/ C
	0 - 5V -1mA < Ii < 1mA
Two freely selectable and scaleable analogue outputs	
	$0 - 10V$ $-1mA < I_{L} < 1mA$
	4 - 20mA R _L < 500 Ohm
2)	0 - 20mA R _L ⁻ < 500 Ohm
ljustable measurement range ²⁾	
	from up to units
Water activity a _w	0 1
Temperature T	-40 (-40) 180 (356) °C (°F)
Water content ³⁾ x	0 5000 ppm
eneral	
Supply voltage	835V DC
	1230V AC (optional 100240V AC, 50/60H
Current consumption - 2x voltage output	for 24V DC/AC: typ. 40mA
- 2x current output	typ. 80mA
Pressure range sensing pobe	0.0120bar (0.15300psi)
System requirements for software	WINDOWS 2000 or later; serial interface
Serial interface for configuration ⁴⁾	
Serial interface for configuration ⁴⁾	RS232C
Serial interface for configuration ⁴⁾ Housing / Protection class	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39")
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm ² (AWG 16)
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm ² (AWG 16) stainless steel filter
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm ² (AWG 16)
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm ² (AWG 16) stainless steel filter -4060°C (-40140°F)
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range Housing with display	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm ² (AWG 16) stainless steel filter -4060°C (-40140°F) -2050°C (-4122°F)
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm ² (AWG 16) stainless steel filter -4060°C (-40140°F) -2050°C (-4122°F) -4060°C (-40140°F)
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range Housing with display	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm² (AWG 16) stainless steel filter -4060°C (-40140°F) -2050°C (-40122°F) -4060°C (-40140°F) EN61326-1 EN61326-2-3
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range Housing with display Storage temperature Electromagnetic compatibility according to	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm² (AWG 16) stainless steel filter -4060°C (-40140°F) -2050°C (-4122°F) -4060°C (-40140°F)
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range Housing with display Storage temperature	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm² (AWG 16) stainless steel filter -4060°C (-40140°F) -2050°C (-40122°F) -4060°C (-40140°F) EN61326-1 EN61326-2-3 Industrial Environment FCC Part15 ClassB
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range Housing with display Storage temperature Electromagnetic compatibility according to	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm² (AWG 16) stainless steel filter -4060°C (-40140°F) -2050°C (-40122°F) -4060°C (-40140°F) EN61326-1 EN61326-2-3 Industrial Environment FCC Part15 ClassB
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range Housing with display Storage temperature Electromagnetic compatibility according to GL-Certification ⁵⁾	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm² (AWG 16) stainless steel filter -4060°C (-40140°F) -2050°C (-40122°F) -4060°C (-40140°F) EN61326-1 EN61326-2-3 Industrial Environment FCC Part15 ClassB
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range Housing with display Storage temperature Electromagnetic compatibility according to GL-Certification ⁵⁾	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm² (AWG 16) stainless steel filter -4060°C (-40140°F) -2050°C (-4122°F) -4060°C (-40140°F) EN61326-1 EN61326-2-3 Industrial Environment FCC Part15 ClassB Environmental Category D (6)
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range Housing with display Storage temperature Electromagnetic compatibility according to GL-Certification ⁵⁾	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm² (AWG 16) stainless steel filter -4060°C (-40140°F) -2050°C (-4122°F) -4060°C (-40140°F) EN61326-1 EN61326-2-3 Industrial Environment FCC Part15 ClassB Environmental Category D graphical LCD (128x32 pixels), with integrated push-
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range Housing with display Storage temperature Electromagnetic compatibility according to GL-Certification ⁵⁾ Dtions Display	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm ² (AWG 16) stainless steel filter -4060°C (-40140°F) -2050°C (-4122°F) -4060°C (-40140°F) EN61326-1 EN61326-2-3 ICES-003 ClassB Industrial Environment FCC Part15 ClassB Environmental Category D graphical LCD (128x32 pixels), with integrated push- buttons for selecting parameters and MIN/MAX function
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range Housing with display Storage temperature Electromagnetic compatibility according to GL-Certification ⁵⁾	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm ² (AWG 16) stainless steel filter -4060°C (-40140°F) -2050°C (-4122°F) -4060°C (-40140°F) EN61326-1 EN61326-2-3 ICES-003 ClassB Industrial Environment FCC Part15 ClassB Environmental Category D graphical LCD (128x32 pixels), with integrated push- buttons for selecting parameters and MIN/MAX function 2 x 1 switch contact: 250V AC / 6A and 28V DC / 6A
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range Housing with display Storage temperature Electromagnetic compatibility according to GL-Certification ⁵⁾ Display Alarm outputs	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm ² (AWG 16) stainless steel filter -4060°C (-40140°F) -2050°C (-40140°F) EN61326-1 EN61326-2-3 ICES-003 ClassB Industrial Environment FCC Part15 ClassB Environmental Category D graphical LCD (128x32 pixels), with integrated push- buttons for selecting parameters and MIN/MAX function 2 x 1 switch contact: 250V AC / 6A and 28V DC / 6A threshold + hysteresis can be adjusted with configuration softwar
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range Housing with display Storage temperature Electromagnetic compatibility according to GL-Certification ⁵⁾ Dtions Display	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm ² (AWG 16) stainless steel filter -4060°C (-40140°F) -2050°C (-40140°F) EN61326-1 EN61326-2-3 ICES-003 ClassB Industrial Environment FCC Part15 ClassB Environmental Category D graphical LCD (128x32 pixels), with integrated push- buttons for selecting parameters and MIN/MAX function 2 x 1 switch contact: 250V AC / 6A and 28V DC / 6A threshold + hysteresis can be adjusted with configuration softwar a _w Water activity
Serial interface for configuration ⁴⁾ Housing / Protection class Cable gland Electrical connection Sensor protection Operating temperature range of electronics Working and storage temperature range Housing with display Storage temperature Electromagnetic compatibility according to GL-Certification ⁵⁾ Display Alarm outputs	RS232C PC or Al Si 9 Cu 3 / IP65; Nema 4 M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals up to max. 1.5mm ² (AWG 16) stainless steel filter -4060°C (-40140°F) -2050°C (-40140°F) EN61326-1 EN61326-2-3 ICES-003 ClassB Industrial Environment FCC Part15 ClassB Environmental Category D graphical LCD (128x32 pixels), with integrated push- buttons for selecting parameters and MIN/MAX function 2 x 1 switch contact: 250V AC / 6A and 28V DC / 6A threshold + hysteresis can be adjusted with configuration softwar

accordance with EA-4/02 and with regard to GUM (Guide to the Expression of Uncertainty in Measurement).

Ordering Guide_

									EE36-
Hardware Configu	Iration								
Housing		al housind	1						м
U	vloq	carbonate	, housing ¹⁾						Р
Туре		ssure tight							E
Cable length		(3.3ft)							01
(incl. probe length)		(6.6ft)							02
((16.4ft)							05
		1 (32.8ft)							10
		1 (65.6ft)							20
Probe length		mm (3.9")							3
Ū	200	mm (7.9")							5
Pressure-tight	1/2"	male thre	ad						HA03
feedthrough	1/2"	NPT thre	ad						HA07
Display	with	out displa	у						
	with	i display							D05
Alarm output ²⁾	with	out relay							
		relay							SW
Plug	cab	le thread							
			ver supply and our						C03
			d / 1 plug for RS2						C06
	2 pl	ugs for po	wer supply/output	s and RS	232				C07
Sensing probe	fixe								
		rchangeat							P01
Supply voltage			1230V AC		1.0				
	inte	grated pov	wer supply 1002	40V AC, 5	50/60Hz ^{1) 3)}				V01
Software Configu	ration								select according to
Physical	Temperatu	ire			т	[°C / °F]	(B)	Output 1	Ordering Guide
parameters of	Water acti				aw	[]	(K)	output	(B,K,L,M)
outputs			eral transformer oil		x	[ppm]	(L)	Output 2	select according to
- alpaio			ication or non-mine	rol transfo	0		(M)	o alpar 1	Ordering Guide (B,K,L,M)
Tumo of	0-5V	lent in lubri	ication of non-mine		rmer oil ' x	[ppm] (2)	(1VI)		
Type of output signals	0-3V 0-10V					(2)			select according to Ordering Guide
output signals	0-10V 0-20mA					(5)			(2,3,5,6)
	4-20mA					(6)			(2,0,0,0)
Temperature unit	°C					(0)			
remperature utili	°F								E01
Scaling of T-output	-4060	(T02)	-20100	(T14)	-40140) (T83)			LVI
in°C or °F	050	· · ·	0120) (T88)		Output T	select according to
	0100		080) (T90)		Jupuri	Ordering Guide (Txx)
	-3070		-2080) (T91)			, , , , , , , , , , , , , , , , , , ,
	-20120		-40160) (T94)			other T-scaling refer
	-40120		-40250		32132				to page 146
ppm Range x	0100ppm	<u> </u>			02	()			select according to
	0500ppm							Output x	Ordering Guide
	01000ppm								(X01 - X03)
1) No GL-Certification		1.1.1							

No GL-Certification
 Combination alarm output and plugs is not possible (with cable glands only) / combination alarm output and integrated power supply includes 2 plugs for power supply and outputs / further plug options are not possible
 Integrated power supply includes 2 plugs for power supply and outputs / further plug options are not possible
 Integrated power supply includes 2 plugs for power supply and outputs / further plug options are not possible
 Integrated power supply includes 2 plugs for power supply and outputs / further plug options are not possible

Accessories / Replacement Parts

(For further information see data sheet "Accessories", page 138)_

 Stainless steel filter for EE36 Display + housing cover in metal Display + housing cover in polycarbonate Replacement probe Humidity sensor Bracket for installation onto mounting rails 	(PExxxx) (FE10) (HA010203)	 Calibration set Interface cable for PCB Interface cable for plug C06, C07 Ball valve set 1/2" ISO Ball valve set 1/2" NPT Double nibble G1/2" to G3/4" 	(HA0104xx) (HA010304) (HA010311) (HA050101) (HA050104) (HA011107)
- Sealing element	(HA050308)	- Enlargement G1/2" to G3/4"	(HA011106)

Order Example _____

EE36-PE055HA03D05P01/BL3-T08-X01

Housing:	polycarbonate housing
Туре:	pressure tight
Cable length:	5m (16.4ft)
Probe length:	200mm (7.9")
Pressure-tight feedthrough:	1/2" male thread
Display:	with display
Alarm output:	without relay
Plug:	1 plug for power supply and output
Sensing probe:	interchangeable
Suppy voltage:	835V DC / 1230V AC

Output 1:	Т
Output 2:	x (mineral transformer oil)
Output Signal:	0-10V
Temperature unit:	°C
Scaling of T-output:	-3070°C
Water content x:	0100ppm

EE381 Series

E+E Transmitter Series EE381 are specially designed for the measurement of water content in oil. EE381 is ideal for online monitoring of moisture in lubrication or insulation oil, which is very important for the long-term performance and preventive maintenance of plant and machinery.

For instance, moisture affects dramatically the insulation characteristics of electrical transformer oil and therefore continuous monitoring is extremely important.

Humidity measurement in oil

Similar to the humidity in the air, the water content in oil can be indicated by the absolute value in ppm or by the relative value a_w :

- ppm (mass of water / mass of oil)

- a_w (actual water content as fraction of the water content in saturated oil)

Compact Transmitter / Switch for Moisture Content in Oil

 $a_w = 0$ corresponds to water-free oil, while $a_w = 1$ indicates saturated oil. a_w measurement with the EE381 transmitter is based on the outstanding long term stability and resistance to pollution of the E+E capacitive sensor elements series HC.

The measured physical quantities are water activity a_w and temperature T. With these quantities EE381 calculates the water content x (ppm) in mineral transformer oils. Calculation of water content (ppm) in non-mineral oils and lubrication oils can be achieved by programming the specific parameters of the oil into the EE381.

Outputs_

The EE381 transmitter has two freely selectable and scaleable outputs for water activity, water content or temperature.

The EE381 switch with two relay outputs is designed for control and alarm purposes. The status for early warning and main alarm is indicated by LED's.

Adjustment of the a_w/T/ppm set point and hysteresis can be achieved with the optional configuration software.

Configuration Software

The optional configuration software allows flexible and easy adjustment of the analogue resp. relay outputs to the respective requirements.

The adjustment / calibration of the transmitters can easily be performed.

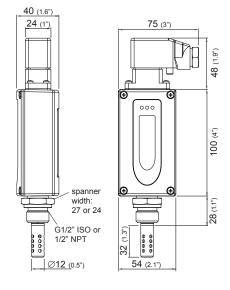
Screw Connection for Mounting - 360° positionable

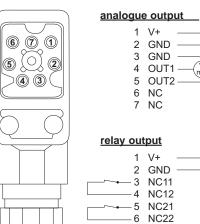
The construction of this screw connection enables any position / rotation of the mounted transmitter. So an optimal position of the display resp. the cable outlet is guaranteed.

Typical Applications_

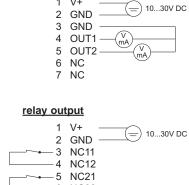
monitoring of

- transformer oil
- hydraulic oil
- ship engines


measuring range 0...1 a_w measurement of water content in ppm medium temperature -40...80°C (-40...176°F) two relay outputs for a_w/ppm/T


Features

EE381



Dimensions in mm_

Connection Diagram

7 not connected

Technical Data **Measuring values**

Water activity	
Humidity sensor	HMC01
Measuring range	01a _w
Accuracy incl. hysteresis and nonlinearity in air	±0.02ä _w (00.9a _w) ±0.03a _w (0.91a _w) Traceable to intern. standards, administrated by NIST, PTB, BE
Temperature dependence	a _w : ±(0.00022 + 0.0002 x a _w) x ∆T [°C] ∆T = T - 20°C T: ±(0.0003°C/°C)
Response time with stainless steel filter at 20°C / t _{an}	typ. 10min in still oil
Temperature	HMC01
Working range sensing probe	-4080°C (-40176°F)
Accuracy	Δ°C 0.4 ¬
,	
	0.3
	0.2 —
	0.1 —
	0 C
	-0.1 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80
	-0.2 -
	-0.3
uts EE291 Tx two fractly coloritable and coolorable	
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output	$\begin{array}{llllllllllllllllllllllllllllllllllll$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output	0 - 1V / 0 - 5V / 0 - 10V ¹⁾ -1mA < I _L < 1mA 4 - 20mA / 0 - 20mA R _L < 500 Ohm ¹⁾
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output	$\begin{array}{llllllllllllllllllllllllllllllllllll$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output eral Supply voltage	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output eral Supply voltage Current consumption at 24V DC	$\begin{array}{cccccccc} 0 & - & 1V & / & 0 & - & 5V & / & 0 & - & 10V^{1)} & -1mA < I_L < & 1mA \\ \hline 4 & - & 20mA & & R_L < & 500 & Ohm^{1)} \\ \hline 2 & potential-free & relays (NC) \\ \hline 30V & DC & 0.6A & / & 35V & AC & 0.3A (resistive) \\ \hline 1030V & DC \\ \hline voltage & output: & typ. & 40mA & / & during & autocalibration: & 100mA \\ \hline current & output: & typ. & 80mA & / & during & autocalibration: & 140mA \\ \hline \end{array}$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output eral Supply voltage Current consumption at 24V DC Pressure range	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output eral Supply voltage Current consumption at 24V DC Pressure range System requirements for software	$\begin{array}{cccccccc} 0 & - & 1V & / & 0 & - & 5V & / & 0 & - & 10V^{1)} & -1mA < I_L < & 1mA \\ \hline 4 & - & 20mA & & R_L < & 500 & Ohm^{1)} \\ \hline 2 & potential-free & relays (NC) \\ \hline 30V & DC & 0.6A & / & 35V & AC & 0.3A (resistive) \\ \hline 1030V & DC \\ \hline voltage & output: & typ. & 40mA & / & during & autocalibration: & 100mA \\ \hline current & output: & typ. & 80mA & / & during & autocalibration: & 140mA \\ \hline \end{array}$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output eral Supply voltage Current consumption at 24V DC Pressure range System requirements for software Serial interface for configuration	$\begin{array}{ccccccc} 0 & - & 1V \ / \ 0 & - & 5V \ / \ 0 & - & 10V^{1)} & -1mA < I_L < 1mA \\ \hline 4 & - & 20mA \ / \ 0 & - & 20mA & R_L < & 500 \ Ohm^{1)} \\ \hline 2 & potential-free \ relays \ (NC) \\ \hline 30V \ DC \ 0.6A \ / & 35V \ AC \ 0.3A \ (resistive) \\ \hline 1030V \ DC \\ \hline voltage \ output: \ typ. \ 40mA \ / \ during \ autocalibration: \ 100mA \\ current \ output: \ typ. \ 80mA \ / \ during \ autocalibration: \ 140mA \\ \hline 020bar \ (0290psi) \ / \ 0100bar \ (01450psi) \\ \hline WINDOWS \ 2000 \ or \ later; \ serial \ interface \\ RS232C \end{array}$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output eral Supply voltage Current consumption at 24V DC Pressure range System requirements for software	$\begin{array}{ccccccc} 0 & -1 \mbox{ V} / 0 & -5 \mbox{ V} / 0 & -10 \mbox{ V}^{1)} & -1 \mbox{ mA} < \mbox{ I}_L < 1 \mbox{ mA} \\ 4 & -20 \mbox{ mA} / 0 & -20 \mbox{ mA} & \mbox{ R}_L < 500 \mbox{ Ohm}^{1)} \\ 2 \mbox{ potential-free relays (NC)} \\ 30 \mbox{ v DC } 0.6 \mbox{ A} / 35 \mbox{ V AC } 0.3 \mbox{ (resistive)} \\ \hline 10 \hbox{30V DC} \\ voltage output: typ. 40 \mbox{ mA} / during autocalibration: 100 \mbox{ mA} \\ current output: typ. 80 \mbox{ mA} / during autocalibration: 140 \mbox{ mA} \\ 0 \hbox{20bar } (0 \hbox{290 \mbox{ psi}) / 0 \hbox{100 \mbox{ bar} (0 \hbox{1450 \mbox{ psi})} \\ WINDOWS 2000 \mbox{ or later; serial interface} \\ RS232C \\ Al Si 9 \mbox{ Cu } 3 / IP65 \end{array}$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output eral Supply voltage Current consumption at 24V DC Pressure range System requirements for software Serial interface for configuration Housing / Protection class	$\begin{array}{ccccccc} 0 & -1 \mbox{ V} & 0 & -5 \mbox{ V} & 0 & -10 \mbox{ V}^{1)} & -1 \mbox{ mA} < \mbox{ I}_L < 1 \mbox{ mA} \\ 4 & -20 \mbox{ mA} & 0 & -20 \mbox{ mA} & \mbox{ R}_L < 500 \mbox{ Ohm}^{1)} \\ 2 \mbox{ potential-free relays (NC)} \\ 30 \mbox{ V DC } 0.6 \mbox{ A} & 35 \mbox{ V AC } 0.3 \mbox{ (resistive)} \\ \hline 10 &30 \mbox{ V DC } \\ voltage \mbox{ output: typ. 40 \mbox{ mA} & \mbox{ during autocalibration: 100 \mbox{ mA} \\ current \mbox{ output: typ. 80 \mbox{ mA} & \mbox{ during autocalibration: 140 \mbox{ mA} \\ 0 &20 \mbox{ bar} & (0 &290 \mbox{ psi) } \mbox{ 0} &100 \mbox{ bar} & (0 &1450 \mbox{ psi) \\ \hline WINDOWS & 2000 \mbox{ or later; serial interface } \\ RS232C \\ \mbox{ Al Si 9 Cu 3 / IP65 } \\ 7 \mbox{ pole industrial plug: DIN \ VDE } 0627 \ / \ IEC \ 61984 \\ \end{array}$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output eral Supply voltage Current consumption at 24V DC Pressure range System requirements for software Serial interface for configuration Housing / Protection class Electrical connection	$\begin{array}{cccccccc} 0 & - 1 V / 0 & - 5 V / 0 & - 10 V^{1)} & -1 m A < I_L < 1 m A \\ 4 & - 20 m A / 0 & - 20 m A & R_L < 500 \ Ohm^{1)} \\ 2 \ potential-free \ relays \ (NC) \\ 30 V \ DC \ 0.6A / \ 35 V \ AC \ 0.3A \ (resistive) \\ \hline 1030V \ DC \\ voltage \ output: \ typ. \ 40 m A / \ during \ autocalibration: \ 100 m A \\ current \ output: \ typ. \ 40 m A / \ during \ autocalibration: \ 100 m A \\ current \ output: \ typ. \ 80 m A / \ during \ autocalibration: \ 100 m A \\ 020 bar \ (0290 psi) / \ 0100 bar \ (01450 psi) \\ WINDOWS \ 2000 \ or \ later; \ serial \ interface \\ RS232C \\ Al \ Si \ 9 \ Cu \ 3 / \ IP65 \\ 7-pole \ industrial \ plug: \ DIN \ VDE \ 0627 \ / \ IEC \ 61984 \\ cable \ cross-section: \ 0.25 \ - \ 1 \ mm^2 \ / \ cable \ connection: \ PG \ 11 \\ \end{array}$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output eral Supply voltage Current consumption at 24V DC Pressure range System requirements for software Serial interface for configuration Housing / Protection class Electrical connection Sensor protection	$\begin{array}{ccccccc} 0 & - 1 V / 0 & - 5 V / 0 & - 10 V^{1)} & -1 m A < I_L < 1 m A \\ 4 & - 20 m A / 0 & - 20 m A & R_L < 500 \ Ohm^{1)} \\ 2 \ potential-free \ relays \ (NC) \\ 30 V \ DC \ 0.6A / 35 V \ AC \ 0.3A \ (resistive) \\ \hline 1030V \ DC \\ voltage \ output: \ typ. \ 40 m A / \ during \ autocalibration: \ 100 m A \\ current \ output: \ typ. \ 40 m A / \ during \ autocalibration: \ 100 m A \\ current \ output: \ typ. \ 80 m A / \ during \ autocalibration: \ 100 m A \\ 020 bar \ (0290 psi) / \ 0100 bar \ (01450 psi) \\ WINDOWS \ 2000 \ or \ later; \ serial \ interface \\ RS232C \\ Al \ Si \ 9 \ Cu \ 3 / \ IP65 \\ 7-pole \ industrial \ plug: \ DIN \ VDE \ 0627 / \ IEC \ 61984 \\ cable \ cross-section: \ 0.25 \ - \ 1 \ mm^2 / \ cable \ connection: \ PG \ 11 \\ stainless \ steel \ filter \ (punched) \end{array}$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output eral Supply voltage Current consumption at 24V DC Pressure range System requirements for software Serial interface for configuration Housing / Protection class Electrical connection	$\begin{array}{ccccccc} 0 - 1V / 0 - 5V / 0 - 10V^{1)} & -1mA < I_L < 1mA \\ 4 - 20mA / 0 - 20mA & R_L < 500 \ Ohm^{1)} \\ 2 \ potential-free \ relays \ (NC) \\ 30V \ DC \ 0.6A / \ 35V \ AC \ 0.3A \ (resistive) \\ \hline 1030V \ DC \\ voltage \ output: \ typ. \ 40mA / \ during \ autocalibration: \ 100mA \\ current \ output: \ typ. \ 40mA / \ during \ autocalibration: \ 100mA \\ current \ output: \ typ. \ 80mA / \ during \ autocalibration: \ 100mA \\ current \ output: \ typ. \ 80mA / \ during \ autocalibration: \ 140mA \\ 020bar \ (0290psi) / \ 0100bar \ (01450psi) \\ \hline WINDOWS \ 2000 \ or \ later; \ serial \ interface \\ RS232C \\ Al \ Si \ 9 \ Cu \ 3 / \ IP65 \\ 7-pole \ industrial \ plug: \ DIN \ VDE \ 0627 \ / \ IEC \ 61984 \\ cable \ cross-section: \ 0.25 \ - \ 1 \ mm^2 \ / \ cable \ connection: \ PG \ 11 \\ stainless \ steel \ filter \ (punched) \\ probe: \ -4080^{\circ}C \ (-40176^{\circ}F) \end{array}$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output eral Supply voltage Current consumption at 24V DC Pressure range System requirements for software Serial interface for configuration Housing / Protection class Electrical connection Sensor protection	$\begin{array}{ccccccc} 0 - 1V / 0 - 5V / 0 - 10V^{1)} & -1mA < I_L < 1mA \\ 4 - 20mA / 0 - 20mA & R_L < 500 \ Ohm^{1)} \\ 2 \ potential-free \ relays (NC) \\ 30V \ DC \ 0.6A / 35V \ AC \ 0.3A \ (resistive) \\ \hline 1030V \ DC \\ voltage \ output: \ typ. \ 40mA / \ during \ autocalibration: \ 100mA \\ current \ output: \ typ. \ 40mA / \ during \ autocalibration: \ 100mA \\ current \ output: \ typ. \ 80mA / \ during \ autocalibration: \ 100mA \\ current \ output: \ typ. \ 80mA / \ during \ autocalibration: \ 140mA \\ 020bar \ (0290psi) / \ 0100bar \ (01450psi) \\ \hline WINDOWS \ 2000 \ or \ later; \ serial \ interface \\ RS232C \\ Al \ Si \ 9 \ Cu \ 3 / \ IP65 \\ 7-pole \ industrial \ plug: \ DIN \ VDE \ 0627 / \ IEC \ 61984 \\ cable \ cross-section: \ 0.25 - \ 1 \ mm^2 / \ cable \ connection: \ PG \ 11 \\ stainless \ steel \ filter \ (punched) \\ probe: \ -4080^{\circ}C \ (-40176^{\circ}F) \\ electronic: \ -4060^{\circ}C \ (-40140^{\circ}F) \end{array}$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output eral Supply voltage Current consumption at 24V DC Pressure range System requirements for software Serial interface for configuration Housing / Protection class Electrical connection Sensor protection Working temperature range	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output eral Supply voltage Current consumption at 24V DC Pressure range System requirements for software Serial interface for configuration Housing / Protection class Electrical connection Sensor protection Working temperature range	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
EE381-Tx two freely selectable and scaleable analogue outputs for a _w , T, ppm EE381-Sx alarm output eral Supply voltage Current consumption at 24V DC Pressure range System requirements for software Serial interface for configuration Housing / Protection class Electrical connection Sensor protection Working temperature range	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Ordering Guide ____

							EE381-	EE381-
Hardware Configur	ation							
Model	transmitter						т	
	switch							S
Pressure range	up to 20bar (290psi)						E	E
	up to 100bar (1450psi)						1 I I	1
Pressure tight	G1/2" male thread						HA03	HA03
feedthrough	1/2" NPT thread						HA07	HA07
Display	without display							
	with display						D08	D08
Software Configura	ation						select acc	ording to
Physical	Temperature		т	[°C / °F]	(B)	output/relay 1	Ordering Gui	
parameters of	Water activity		aw	[]	(K)			
outputs	Water content in mineral	transformer oil	x	[ppm]	(L)	output/relay 2	select acc	ording to
	Water content in lubricatio	n or non-mineral transforme	r oil ¹⁾ x	[ppm]	(M)		Ordering Gui	
Type of	0-1V				. ,		1	
output signals	0-5V						2	
(only for model T)	0-10V						3	
	0-20mA						5	
	4-20mA						6	
Temperature unit	°C							
	°F						E01	E01
Scaling of T-output	-4060 (T02)	-20100 (T14)	-401	40 (T83)			select	
(in °C or °F)	050 (T04)	0120 (T16)	02	50 (T88)		output/relay T	according to	
	0100 (T05)	080 (T21)	321	20 (T90)			Ordering Guide (Txx)	
	-3070 (T08)	-2080 (T24)	321	40 (T91)			· · · /	
	-20120 (T10)	-40160 (T33)	322	50 (T94)			other T-scaling refer to page	
	-40120 (T12)	-40250 (T81)	321	32 (T96)			146	
ppm Range x	0100ppm (X01)						select	
	0500ppm (X02)	other measuring rang	je:	_		output/relay x	according to Ordering	
	01000ppm (X03)						Guide	
Setting of alarm	standard							
output	other set points:	relay 1: hysteresis 1:	relay 2					SP
		nysteresis 1:	nystere	SIS 2:				

1) Input of oil specific parameters necessary

Accessories _

- Stainless steel grid (HA010110)
- Display

(HA010110) (D08)

- Configuration software + interface cable (HA010604)

without display

Order Example

Display:

EE381-TEHA03D08/BL2-T05-X01

Model: Pressure range: Pressure tight feedthrough Display:	transmitter up to 20bar (290psi) : G1/2" male thread with display	Output 1: Output 2: Output signal: Temperature unit: Scaling of T-output: ppm Range:	T x 0-5V °C 0100°C 0100ppm
EE381-SEHA03/KK			
Model: Pressure range: Pressure tight feedthrough	switch up to 20bar (290psi) : G1/2" male thread	Relay 1: Relay 2: Temperature unit:	a _w a _w °C

Setting of alarm output: standard

EE35 Series

Exact dew point monitoring is increasingly playing a more important role in many industrial applications, such as drying processes, air pressure pipelines, etc. For these purposes the multifunctional EE35 Series offers the ideal features.

The EE35 Series is based on a functional, user-friendly housing concept and on the proven polymer humidity sensors of the HC Series.

A specially developed autocalibration process enables measurements in a measurement range of -60...60°C Td (-76...140°F Td), with a Td measurement accuracy of $\pm 2^{\circ}$ C ($\pm 3.6^{\circ}$ F).

Two freely configurable and scaleable analogue outputs are available for the two measurement values (Td, T).

An optional hygrostat output, which can be set by means of a potentiometer, provides an alarm signal in a simple way when a threshold of the permitted dew point is exceeded.

An optional display for the measurement values and the associated MIN/MAX values allows a quick overview of the current situation.

Autocalibration_

Dew points in the range of -60...-20°C (-76...-4°F) at room temperatures correspond to relative humidity values of 0.08...5.37% RH. The measurement of such low humidity values is not possible with conventional capacitive measurement methods. For the EE35 Series, a special autocalibration process is used to compensate for the usual drift effects and thus to achieve high accuracy measurements also at -60°C Td (-76°F Td).

Installation_____

In addition to the direct mounting of the dew point probe, a ball valve installation enables the mounting and removal of the probe without having to interrupt the running process.

Alarm Output _

An optional alarm module with one relay output is available for control and alarm purposes. The setting of the Td threshold can be easily done with the potentiometer on the printed circuit board.

Integrated power supply_

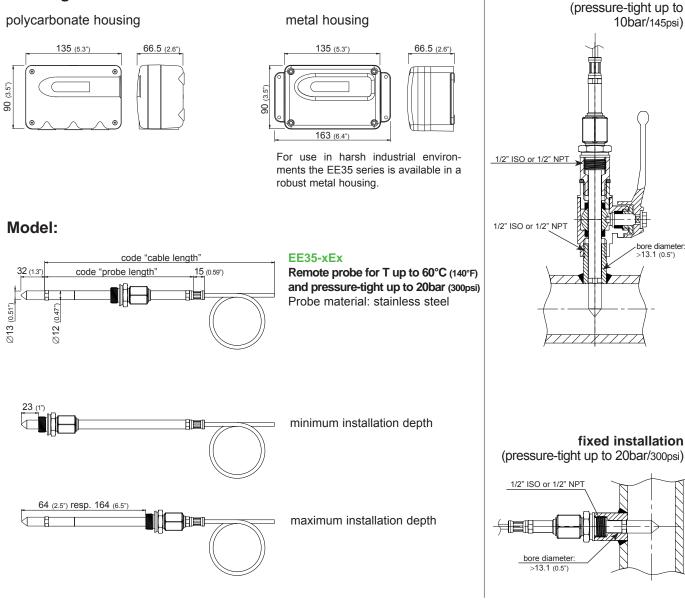
A power supply, integrated in the back module of the housing, can be ordered optionally (100...240V AC, 50/60Hz; ordering code V01). The power supply V01 is available for both polycarbonate and metal housing and comes standard with two plugs for supply and outputs to allow an easy connection.

Features

Typical Applications

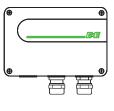
industrial processes monitoring of air pressure pipelines warehouses drying processes paper industries chemical industries measuring range -60...60°C Td (-76...140°F Td) accuracy of measurement ±2°C Td (±3.6°F Td) traceable calibration alarm output for dew point autocalibration

Industrial Transmitter for Dew Point Measurement

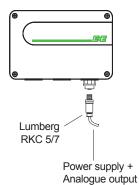

ball valve installation

bore diameter: >13.1 (0.5")

Housing Dimensions (mm)_____


Installation Example

Housing:


Connection Versions

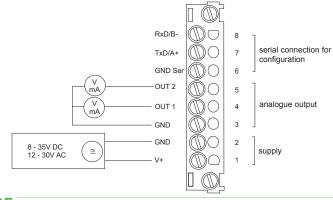
Standard

2x M16x1.5

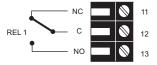
Plug Option C03

Plug Option C06

Technical Data


Measuring Quantities

Neasuring Quantities						
Dew point						
Humidity sensor						
Measuring range	standard calibration: -4060°C (-40140°F)					
(below 0°C / 32°F the transmitter outputs frostpoint)	special calibration: -6060°C (-76140°F) $\leq \pm 2^{\circ}C \ (\leq \pm 3.6^{\circ}F)$					
Accuracy						
Traceable to intern. standards,	80					
administrated by NIST, PTB, BEV						
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
	20					
	to -40 uncertainty of measurement ≤ ±2 degC					
	6 -60 limit of measuring range					
	Process temperature (°C)					
Response time t ₉₀	80 sec. $-20^{\circ}C \rightarrow -40^{\circ}C$ (-4°F \rightarrow -40°F)					
	10 sec. $-40^{\circ}C \rightarrow -20^{\circ}C$ (-40°F $\rightarrow -4^{\circ}F$)					
Temperature						
Sensor	Pt1000 DIN A					
Measuring range	060°C (32140°F)					
Accuracy of temperature measurement at 20°C (68°F)	±0.2°C (±0.36°F)					
Sensitivity error at full scale	±0.1°C (±0.18°F)					
Temperature dependence of electronics	< 0.005°C/°C					
Outputs Two freely selectable and scaleable analogue outputs	$0 - 5V$ $-1mA < I_{L} < 1mA$					
Two freely selectable and scaleable analogue outputs	$0 - 10V$ $-1mA < I_{L}^{L} < 1mA$					
xxyy°C T, Td/Tf / xxyy°C respectively	$4 - 20 \text{mA}$ $R_{L} < 500 \text{O} \text{m}$					
0 - m - m - l	0 - 20mA R _L < 500 Ohm					
General Supply voltage	835V DC					
Supply voltage	1230V AC (optional 100240V AC, 50/60Hz)					
Current consumption - voltage output	typ. 40mA, with autocalibration: 100mA					
- current output	typ. 80mA, with autocalibration: 140mA					
Pressure range	020bar (0300psi)					
Housing / protection class	PC or Al Si 9 Cu 3 / IP65; Nema 4					
Cable gland Electrical connection	M16 x 1.5 (option: plug) cable Ø 4.5 - 10 mm (0.18 - 0.39")					
	screw terminals up to max. 1.5mm ² (AWG 16)					
Sensor protection	stainless steel sintered filter					
Working temperature range	probe: -4060°C (-40140°F)					
	electronic: -4060°C (-40140°F)					
	with LC display: -2050°C (-4122°F)					
	with alarm module: -4060°C (-40140°F)					
Storage temperature range	-4060°C (-40140°F)					
Electromagnetic compatibility according to	EN 61326-1 EN 61326-2-3 ICES-003 ClassB					
	Industrial Environment FCC Part15 ClassB					


Technical Data for Options

Display	graphical LC display (128x32 pixels), with integrated push- buttons for selecting parameters Td or T and MIN/MAX functions
Alarm output for Td/Tf	 range: -6040°C Td (-6040°F Td) adjustable with the potentiometer on the printed circuit board 1 switch contact
	- 250V AC/6A or 28V DC/6A

Connection Diagram

Terminal configuration - Alarm output

Ordering Guide EE35_

polycarbonate housing P Type pressure tight E Cable length 1m (a.%) 02 fm (a.%) 02 Sm (a.%) 02 Probe length 100mm (a.°) 3 200mm (a.°) 5 Probe length 100mm (a.°) 5 200mm (a.°) 5 Probe length 1/2" male thread HA03 Display without display HA03 with display 005 SW Plug cable glands SW 1 plug for power supply and outputs C03 1 cable thread / 1 plug for RS232 C06 Probe fixed P01 pluggable 835V DC / 1230V AC SUPC / 1240V AC, 50/60Hz ²) V01 Software Configuration 835V DC / 1230V AC, 50/60Hz ²) V01 Software Configuration free drower supply 100240V AC, 50/60Hz ²) V01 Software Configuration Software Configuration Software Configuration free drower supply 100240V AC, 50/60Hz ²) V01 Softwar								EE35-
Housing polycarbonate housing polycarbonate housing M polycarbonate housing polycarbonate housing P Type cable length (incl, probe length) 1m (a.sn) (m (a.m) 01 file, probe length (incl, probe length) 5m (a.e.m) 05 Probe length 200mm (r.sn) 3 200mm (r.sn) 5 3 Pressure tight 1/2" NPT thread HA033 bisplay without fisplay HA07 Vithout fisplay 0bs DD5 Alarm output ¹) without relay with display SW Plug cable glands 1 plug for power supply and outputs 1 plug for power supply and outputs 1 cable thread / 1 plug for RS232 C03 Co2 SW C042 SW Sottport (2.a40 ^x F) special calibration 4060 ^x C (2.e40 ^x F) CA02 SW Sottport (2.a30 VAC integrated power supply 100240 VAC, 50/60Hz ² V01 SC Sottport (2.a30 VAC integrated power supply 100240 VAC, 50/60Hz ² V01 S Sottport (2.a30 VAC integrated power supply 100240 VAC, 50/60Hz ² V01 S Sottport (2.a30 VAC integrated power supply 100	Hardware Configuration							
polycarbonate housing P Type pressure tight E Cable length 1m (atn) 02 5m (istn) 2m (atn) 02 5m (istn) 100mm (asr) 3 200mm (ar) 3 3 200mm (ar) 3 3 Probe length 100mm (ar) 3 200mm (ar) 3 3 Probe length 1/2" male thread HA03 Display with display HA03 with display 005 1 with relay SW 005 1 pulg for power supply and outputs C03 1 cable thread / 1 pulg for RS232 C06 Probe fixed Pol pluggable S.35V DC / 1230V AC CA02 Supply voltage 835V DC / 1230V AC Supply voltage 835V DC / 1230V AC free to power supply 100240V AC. 50(60Hz ²) V01 Software 2 Chiby comparate to thread / 1 [°C/°F] output 1 B Software T <td>Housing</td> <td>metal housing</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>м</td>	Housing	metal housing						м
Type pressure light E Cable length 1m (x3m) 01 incl. probe length) 2m (x4m) 02 Sm (x4m) 5m 03 Probe length 100mm (x9) 3 200mm (x9) 5 5 Pressure tight 1/2" male thread HA03 bleplay with display HA07 Display with display D05 Alarm output ¹) with out faily D05 YW Cable glands C03 1 plug for power supply and outputs C03 1 plug for power supply and outputs C04 1 plug for power supply and outputs C04 1 plug for power supply and outputs C03 1 cable thread / 1.060°C (40407?) CA02 Supply voltage 839V DC / 1230V AC D01 Software Configuration Software Configuration Physical parameters E for to output Gew point temperature T [°C?F] Output 1 B of the outputs Gew point temperature	5	•						Р
Cable length Imr.(a, any) 01 Incel, probe length) 2m. (a, any) 02 Sm. (cs.any) 05 Probe length 100mm (a, ay) 3 200mm (a, ay) 5 Pressure tight 1/2" male thread HA03 feedthrough 1/2" male thread HA03 biplay with out display Do5 Alarm output ¹⁰ without felag SW Plug cable glands C03 1 cable thread / 1 plug for power supply and outputs C03 1 cable thread / 1 plug for power supply and outputs C04 1 cable thread / 1 plug for power supply and outputs C04 1 cable thread / 1 plug for power supply and outputs C04 1 cable thread / 1 plug for power supply and outputs C04 Special calibration - 6060° C (-2010°F) CA02 Supply voltage 835V DC / 1230V AC integrated power supply 100240V AC, 50/60Hz ²⁰ V01 B Output 1 Physical parameters temperature T for boint temperature T	Type	.,						E
incl. probe length) 2m (s.4) 02 5m (s.4) 05 Probe length 100mm (s.9) 3 200mm (r.9) 5 Pressure tight 1/2" male thread HA03 feedthrough 1/2" NPT thread HA07 Display with display D05 with display Mithout display D05 Alarm output ¹¹ with relay SW Plug cable glands 1 1 plug for power supply and outputs C06 1 cable thread / 1 plug for power supply and outputs C06 Probe fixed plugable P01 Td Calibration Sort C (40140°F) CA02 Supply voltage 835V DC / 1230V AC integrated power supply 100240V AC, 50/60/Hz ²¹ V01 Software Configuration G60°C (40140°F) CA02 Supply voltage 835V DC / 1230V AC integrated power supply 100240V AC, 50/60/Hz ²¹ V01 Software Configuration G60°C (40140°F) CA02 Supply voltage 650°C (76400°F) C								01
Sm (1640) 05 Probe length 100mm (.sr) 3 200mm (.sr) 5 Pressure tight 1/2" male thread HA03 feedthrough 1/2" NPT thread HA07 Display with display D05 Alarm output ¹⁰ without display D05 Alarm output ¹⁰ without clay SW Plug cable glands C03 1 cable thread / 1 plug for RS232 C06 Probe fixed P01 Td Calibration standard -4060°C (-40140°F) CA02 special calibration -6060°C (-76140°F) CA02 Stoppy voltage 835V DC / 1230V AC V01 Software Configuration thegreature T [°C/°F] Output 1 B dew point temperature T [°C/°F] D Type of ouput signals 0-5V 2 0-10V -20mA 5 4-20mA 6 5 T / Td / Tf Unit "F E01 Selaing of T-output 4060 ((incl. probe length)	2m (6.6ft)						02
200mm (rsr) 5 Pressure tight 1/2" male thread HA03 1/2" NPT thread HA07 Display without display D05 Alarm output ¹) without display D05 Alarm output ¹) without display D05 Alarm output ¹) without relay D05 With relay SW C03 1 cable thread / 1 plug for Power supply and outputs C06 1 cable thread / 1 plug for RS232 P01 Probe fixed P01 pluggable SW CA02 CA02 Supply voltage 835V DC / 1230V AC SOfC (rel_140°F) Software Configuration Second Crel_140°F) CA02 Software Configuration Gew point temperature T [C/F] Output 1 B of the outputs dew point temperature T [C/F] Output 2 C Type of ouput signals 0.5V - - 2 - 0.10V - - 5 - 3 -		5m (16.4ft)						05
Pressure tight 1/2" male thread HA03 leedthrough 1/2" NPT thread HA03 Display without fielpaly D05 Alarn output" with display D05 Alarn output" G03 C03 1 cable thread / 1 plug for power supply and outputs C06 right Second C (40140°F) C402 Supply voltage 835V DC (71230V AC integrated power supply 100240V AC, 50/60Hz ²) V01 Software Configuration temperature T [°C/°F] Output 1 B Physical parameters temperature T [°C/°F] D C C Software Configuration 0-10V 3	Probe length	100mm (3.9")						3
feedthrougn 1/2" NPT thread HA07 Display with display 005 With display 005 Alarm output" with display 005 Alarm output" with display 005 Alarm output" with relay SW Plug cable glands 003 1 cable thread / 1 plug for RS232 006 Probe fixed P01 special calibration -6060° C (-40140°F) CA02 Supply voltage 835V DC / 1230V AC V01 integrated power supply 100240V AC, 50/60Hz ²) V01 Software Configuration memperature T [°C/*F] output 1 B of the outputs dew point temperature T [°C/*F] output 2 C T/ Tod / Tf Unit °C 5 3 3 3 3 -200mA - - 5 6 5 5 -201V - - - 5 6 T/ Tod / Tf Unit °C	-	200mm (7.9")	5					
Display without display D05 Alarm output ¹) without relay D05 Alarm output ¹) without relay SW Plug cable glands 1 plug for power supply and outputs C03 1 cable thread / 1 plug for RS232 C06 Probe fixed P01 pluggable P01 CA02 Supply voltage 835V DC / 1230V AC CA02 Software Configuration temperature Td [°C/"F] output 1 B dew point temperature Td [°C/"F] output 2 C Software Configuration megrature Tf [°C/"F] output 2 C Physical parameters temperature Tf [°C/"F] output 2 C Software Configuration % 2 0 D D Type of ouput signals 0-5V -2 D D D Output 1 "C "S 3 3 3 3 -200mA -5 <td< td=""><td>Pressure tight</td><td>1/2" male thread</td><td></td><td></td><td></td><td></td><td></td><td>HA03</td></td<>	Pressure tight	1/2" male thread						HA03
with display D05 Alarm output ¹) without relay SW Alarm output ¹) with relay SW Plug cable glands 1 plug for power supply and outputs C03 1 cable thread / 1 plug for RS232 C06 Probe fixed P01 1 cable thread / 1 plug for RS232 P01 1 cable thread / 1 obje for RS232 P01 1 cable thread / 1 plug for RS232 P01 1 cable thread / 1 plug for RS232 P01 1 cable thread / 1 plug for RS232 P01 1 cable thread / 1 plug for RS232 P01 1 cable thread / 1 plug for RS232 P01 1 cable thread / 1 plug for RS232 P01 1 cable thread / 1 plug for RS232 P01 1 cable thread / 1 plug for RS232 P01 1 cable thread / 1 plug for RS232 P01 1 cable thread / 1 plug for RS232 P01 1 cable thread / 1 plug for RS232 P01 1 cable thread / 1 plug for RS232 P01 1 cable thread / 1 plug for RS232 P01 Stadard the output signals 000 (71220	feedthrough	1/2" NPT thread						HA07
Alarm output ¹⁾ without relay with relay SW Plug cable glands SW 1 plug for power supply and outputs C03 1 cable thread / 1 plug for RS232 C06 Probe fixed P01 Td Calibethread / 1 plug for RS232 C06 Probe fixed P01 Td Calibration standard 4060°C (40140°F) CA02 Supply voltage 835V DC / 1230V AC integrated power supply 100240V AC, 50/60Hz ²¹ V01 Software Configuration meperature T [°C/°F] output 1 B Forst point temperature T [°C/°F] output 2 C D Type of ouput signals 0-5V 2 0 3	Display	without display						
Alarm output ¹⁾ without relay with relay SW Plug cable glands SW 1 plug for power supply and outputs C03 1 cable thread / 1 plug for RS232 C06 Probe fixed P01 Td Calibration standard 4060°C (40140°F) CA02 Supply voltage 835V DC / 1230V AC integrated power supply 100240V AC, 50/60Hz ²¹ V01 Software Configuration meperature T [°C/°F] output 1 B Physical parameters temperature T [°C/°F] output 2 C Software Configuration dew point temperature Tf [°C/°F] output 1 B O-10V		with display						D05
with relay SW Plug cable glands C03 1 cable thread / 1 plug for power supply and outputs C03 1 cable thread / 1 plug for RS232 C06 Probe fixed P01 pluggable P01 Td Calibration standard -4060°C (-40140°F) CA02 Supply voltage 833V DC / 1230V AC integrated power supply 100240V AC, 50/60Hz ²¹ V01 Software Configuration Hemperature T [°C/°F] output 1 B of the outputs dew point temperature T [°C/°F] output 2 C frost point temperature T [°C/°F] output 2 C C frost point temperature T [°C/°F] 0utput 1 B 3 0-20mA 5 0-20mA 5 6 3 3 7 Td / Tf Unit °C F E01 Select according to ordering guide (TxX) Ordering guide (TxX) Standing of T-output 4060 (T02) -6020 (T65) 40100 (T79) output T Sele	Alarm output ¹⁾							
1 plug for power supply and outputs C03 1 cable thread / 1 plug for RS232 C06 Probe fixed P01 pluggable P01 Td Calibration standard -4060°C (-40140°F) P01 special calibration -6060°C (-76140°F) CA02 Supply voltage 835V DC / 1230V AC integrated power supply 100240V AC, 50/60Hz ²¹ V01 Software Configuration temperature T (°C/°F] output 1 B dew point temperature Td (°C/°F] output 2 C Type of ouput signals 0-5V 2 0 0 0-20mA 5 5 5 5 4-20mA 6 7 5 6 6 T / Td / Tf Unit °C °F E01 Seleta according to ordering guide(Txx) Other T-scaling refer Codering guide(Txx) Scaling of T-output 4060 (T02) 6020 (T65) -40140 (T79) Output 7 Select according to ordering guide Txx) Scaling of Td/Tf-output 4060 (T02) 060 (T07) -60120 (T97) Other T-scaling refer Scaling of Td/Tf-output 4060		with relay						SW
1 plug for power supply and outputs C03 1 cable thread / 1 plug for RS232 C06 Probe fixed P01 pluggable P01 Td Calibration standard -4060°C (-40140°F) P01 special calibration -6060°C (-76140°F) CA02 Supply voltage 835V DC / 1230V AC integrated power supply 100240V AC, 50/60Hz ²¹ V01 Software Configuration temperature T (°C/°F] output 1 B dew point temperature Td (°C/°F] output 2 C Type of ouput signals 0-5V 2 0 0 0-20mA 5 5 5 5 4-20mA 6 7 5 6 6 T / Td / Tf Unit °C °F E01 Seleta according to ordering guide(Txx) Other T-scaling refer Codering guide(Txx) Scaling of T-output 4060 (T02) 6020 (T65) -40140 (T79) Output 7 Select according to ordering guide Txx) Scaling of Td/Tf-output 4060 (T02) 060 (T07) -60120 (T97) Other T-scaling refer Scaling of Td/Tf-output 4060	Plug	cable glands						
Probe fixed pluggable P01 Td Calibration standard -4060°C (-40140°F) special calibration -6060°C (-76140°F) CA02 Supply voltage 835V DC / 1230V AC integrated power supply 100240V AC, 50/60Hz ²) V01 Software Configuration Physical parameters temperature T [°C/°F] output 1 B Software Configuration Physical parameters temperature T [°C/°F] D D Type of ouput signals 0-5V 0-20mA 0-5V 0-20mA 2 3 3 3 5 4 6 6 7 Td T / T Unit °C F E01 Select accorcding to ordering guide (Txx) Select accorcding to ordering guide (Txx) 0-utput T description Select accorcding to ordering guide (Txx) Other T-scaling refer to page 146 Select accorcding to ordering guide (Tax) Select accorcding to ordering guide (Tdx) Select accorcding to ordering guide (Tdx)	-	1 plug for power supply	and outputs					C03
pluggable P01 Td Calibration standard -4060°C (-40140°F) special calibration -6060°C (-76140°F) CA02 Supply voltage 835V DC / 1230V AC integrated power supply 100240V AC, 50/60Hz ²) V01 Software Configuration temperature T [°C/°F] output 1 B Physical parameters dew point temperature Td [°C/°F] D D Type of ouput signals 0-5V 6-5V 2 D D 0-10V 0-10V 3 3 0 2 D 5 4-20mA 6 T/ Td / Tf Unit °C F E01 Select according to ordering guide (TxX) 0		1 cable thread / 1 plug f	or RS232					C06
Td Calibration standard -4060°C (-40140°F) special calibration -6060°C (-76140°F) CA02 Supply voltage 835V DC / 1230V AC integrated power supply 100240V AC, 50/60Hz ²) V01 Software Configuration emperature T [°C/°F] output 1 B Physical parameters temperature T [°C/°F] output 2 C Software Configuration growth temperature Tf [°C/°F] D D Type of ouput signals 0-5V 2 2 2 0-10V 3 3 2 3 3 3 3 3 0-20mA 5 4-20mA 6 7 7 5 5 6 7 7 5 6 7 7 6 7 7 5 6 7 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 <td>Probe</td> <td>fixed</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Probe	fixed						
special calibration -6060°C (*76140°F) CA02 Supply voltage 835V DC / 1230V AC integrated power supply 100240V AC, 50/60Hz ²) vol Software Configuration Physical parameters of the outputs temperature T [°C/°F] output 1 B of the outputs dew point temperature Td [°C/°F] output 2 C Type of ouput signals 0-5V 2 0 3 3 0-20mA 5 4-20mA 5 4-20mA 6 T / Td / Tf Unit °C °F E01 Select according to ordering guide (Txx) ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 (T97) output T Select according to ordering guide (Txx) -8020 (T64) 20140 (T77) -6060 (T64) output T Select according to ordering guide (Txx) -6060 TO2) 060 (T07) -6060 (T64) output T Select according to ordering guide (Txx) -6060 TO3) 080 (T21) 32120		pluggable						P01
Supply voltage 835V DC / 1230V AC integrated power supply 100240V AC, 50/60Hz ²) V01 Software Configuration Physical parameters temperature T [°C/°F] output 1 B of the outputs dew point temperature Td [°C/°F] output 2 C Type of ouput signals 0-5V 2 D D 0-20mA 5 4-20mA 5 6 T / Td / Tf Unit °C °F E01 Select accorcding to ordering guide (Txx) Scaling of T-output -4060 (T02) -6020 (T65) -40100 (T79) output T Select accorcding to ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 (T97) to page 146 Scaling of Td/Tf-output -4060 (T02) 080 (T21) 32120 ordering guide Grdering guide 0100 (T05) -2080 (T24) 32132 (T96) Other Td/Tf-scaling refer	Td Calibration	standard -4060°C (-40	.140°F)					
integrated power supply 100240V AC, 50/60Hz ²) V01 Software Configuration Physical parameters temperature T [°C/°F] output 1 B of the outputs dew point temperature Td [°C/°F] output 2 C frost point temperature Tf [°C/°F] 0 D D Type of ouput signals 0-5V 2 0.10V 3 3 0-20mA 5 4.20mA 6 5 T / Td / Tf Unit °C °F E01 Select accorcding to ordering guide (Txx) 6 ~6020 (T65) -40100 (T79) output T Select accorcding to ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060<								CA02
Software Configuration T [°C/°F] output 1 B Physical parameters dew point temperature Td [°C/°F] output 2 C of the outputs dew point temperature Tf [°C/°F] output 2 C Type of ouput signals 0-5V 2 D D D 0-10V 0-20mA 5 4-20mA 6 T T / Td / Tf Unit °C F E01 Select accorcding to ordering guide (Txx) Select accorcding to ordering guide (Txx) 0-20mA 6 T/ Td / Tf Unit °C F E01 Select accorcding to ordering guide (Txx) Select accorcding to ordering guide (Txx) 0-20mA 0-20mA Ordering guide (Txx) Other T-scaling refer to page 146 ordering guide (Txx) Other T-scaling refer Select accorcding to ordering guide (Txx) Other Td / Tf -output 4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Select accorcding to ordering guide (Txx) Other Td / Tf -output Select accorcding to ordering guide (Txx) Other Td / Tf -output 550 (T03) 080 (T21) 32120 (T90) Other Td / Tf	Supply voltage							
Physical parameters temperature T [°C/°F] output 1 B of the outputs dew point temperature Td [°C/°F] output 2 C frost point temperature Tf [°C/°F] output 2 C Type of ouput signals 0-5V 2 2 2 0-10V 3 3 3 3 3 0-20mA 5 4 5 6 5 4-20mA 6 7 F E01 5 Scaling of T-output -4060 (T02) -6020 (T65) -40100 (T79) output T Select accorcding to ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 (T97) Other T-scaling refer -6060 (T64) 20140 (T77) Other T-scaling refer to page 146 Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output T resp. Tf x) 0100 (T05)		integrated power supply 100240V AC, 50/60Hz ²⁾					V01	
Physical parameters temperature T [°C/°F] output 1 B of the outputs dew point temperature Td [°C/°F] output 2 C frost point temperature Tf [°C/°F] output 2 C Type of ouput signals 0-5V 2 2 2 0-10V 3 3 3 3 3 0-20mA 5 4 5 6 5 4-20mA 6 7 F E01 5 Scaling of T-output -4060 (T02) -6020 (T65) -40100 (T79) output T Select accorcding to ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 (T97) Other T-scaling refer -6060 (T64) 20140 (T77) Other T-scaling refer to page 146 Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output T resp. Tf x) 0100 (T05)	Software Configuration							
frost point temperature Tf [°C/°F] D Type of ouput signals 0-5V 2 0-10V 3 3 0-20mA 5 4-20mA 6 °F E01 Scaling of T-output -4060 (T02) -6020 (T65) -40100 (T79) output T Select accorcding to ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 (T97) Other T-scaling referer to page 146 Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) 20140 (T77) Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Select according to ordering guide (Txx) 050 (T03) 080 (T21) 32120 (T90) other Tscaling referer to page 146 050 <	Physical parameters	temperature	т	[°C/°F]			output 1	В
Type of ouput signals 0.5V 2 0-10V 3 0-20mA 5 4-20mA 6 °F E01 Scaling of T-output -4060 (T02) -6020 (T65) -40100 (T79) output T -5050 (T27) -50100 (T66) -40140 (T83) ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 (T97) Other T-scaling refer -6060 (T64) 20140 (T77) to page 146 Select according to ordering guide (Txx) Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 0.	of the outputs	dew point temperature	Td	[°C/°F]			output 2	С
0-10V 3 0-20mA 5 4-20mA 6 °F E01 Scaling of T-output -4060 (T02) -6020 (T65) -40100 (T79) output T Scaling of T-output -4060 (T02) -6020 (T65) -40100 (T79) output T Select accorcding to ordering guide (Txx) -5050 (T27) -50100 (T66) -40140 (T83) ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 (T97) Other T-scaling refer -6060 (T64) 20140 (T77) to page 146 Select accorcding to ordering guide -1050 (T03) 080 (T21) 32120 (T90) ordering guide 050 (T04) -4080 (T22) 32140 (T91) (Tdxx resp. Tfxx) 0100 (T05) -2080 (T24) 32132 (T96) Other Td/Tf-scaling refer		frost point temperature	Tf	[°C/°F]				D
0-20mA 5 4-20mA 6 T / Td / Tf Unit °C °F E01 Scaling of T-output -4060 (T02) -6020 (T65) -40100 (T79) output T Scaling of T-output -4060 (T02) -6020 (T65) -40140 (T83) ordering guide (Txx) -5050 (T27) -50100 (T66) -40140 (T83) ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 (T97) Other T-scaling refer -6060 (T64) 20140 (T77) to page 146 Select accorcding to ordering guide (Txx) Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Select accorcding to ordering guide (Txx) 050 (T04) -4080 (T22) 32120 (T90) ordering guide (Tdxx resp. Tfxx) ordering guide (Tdxx resp. Tfxx) 0100 (T05) -2080 (T24) 32132 (T96) Other Td/Tf-scaling refer	Type of ouput signals	0-5V						2
4-20mA 6 T / Td / Tf Unit °C °F E01 Scaling of T-output -4060 (T02) -6020 (T65) -40100 (T79) output T Scaling of T-output -4060 (T02) -6020 (T65) -40100 (T83) ordering guide (Txx) -5050 (T27) -50100 (T66) -40140 (T83) ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 (T97) Other T-scaling refer -6060 (T64) 20140 (T77) to page 146 Select according to ordering guide (Txx) Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Select according to ordering guide (Txx) 050 (T04) -4080 (T22) 32120 (T90) ordering guide (Tdxx resp. Tfxx) Other Td/Tf-scaling refer 0100 (T05) -2080 (T24) 32132 (T96) Other Td/Tf-scaling refer		0-10V						3
T / Td / Tf Unit °C E01 °F Scaling of T-output -4060 (T02) -6020 (T65) -40100 (T79) output T Select accorcding to ordering guide (Txx) -5050 (T27) -50100 (T66) -40140 (T83) ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 (T97) Other T-scaling refer -6060 (T64) 20140 (T77) 50100 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf 050 (T04) -4080 (T22) 32120 (T90) ordering guide (T4x) ordering guide (T4x) 0100 (T05) -2080 (T24) 32132 (T96) Other Td/Tf-scaling refer <td></td> <td>0-20mA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td>		0-20mA						5
°F E01 Scaling of T-output -4060 (T02) -6020 (T65) -40100 (T79) output T Select accorcding to ordering guide (Txx) -5050 (T27) -50100 (T66) -40140 (T83) ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 (T97) Other T-scaling refer -6060 (T64) 20140 (T77) to page 146 Select accorcding to ordering guide (Txx) Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf -1050 (T03) 080 (T21) 32120 (T90) ordering guide (Txx) 050 (T04) -4080 (T22) 32140 (T91) (Tdxx resp. Tfxx) 0100 (T05) -2080 (T24) 32132 (T96) Other Td/Tf-scaling refer		4-20mA						6
Scaling of T-output -4060 (T02) -6020 (T65) -40100 (T79) output T Select according to ordering guide (Txx) -5050 (T27) -50100 (T66) -40140 (T83) ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 (T97) Other T-scaling refer -6060 (T64) 20140 (T77) output Td resp.Tf Select according to ordering guide (Txx) Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 output Td resp.Tf Select according to ordering guide (Txx) 050 (T03) 080 (T21) 32120 (T90) ordering guide (Tdxx) 050 (T04) -4080 (T22) 32140 (T91) (Tdxx resp. Tfxx) 0100 (T05) -2080 (T24) 32132 (T96) Other Td/Tf-scaling refer	T / Td / Tf Unit	°C						
-5050 (T27) -50100 (T66) -40140 (T83) ordering guide (Txx) -8020 (T63) -2070 (T73) -60120 (T97) Other T-scaling refer -6060 (T64) 20140 (T77) -6060 (T64) output Td resp.Tf Select according to ordering guide Scaling of Td/Tf-output -4060 (T02) 060 (T21) 32120 (T90) ordering guide Select according to ordering guide 050 (T04) -4080 (T22) 32140 (T91) (Tdxx resp. Tfxx) Other Td/Tf-scaling refere 0100 (T05) -2080 (T24) 32132 (T96) Other Td/Tf-scaling refere		°F						E01
-8020 (T63) -2070 (T73) -60120 (T97) Other T-scaling refer -6060 (T64) 20140 (T77) -6060 (T64) output Td resp.Tf Select according to ordering guide -1050 (T03) 080 (T21) 32120 (T90) ordering guide (Tdxx resp. Tfxx) 0100 (T05) -2080 (T24) 32132 (T96) Other T-fd/Tf-scaling reference	Scaling of T-output	-4060 (T02)	-6020	(T65)	-40100	(T79)	output T	Select accorcding to
-8020 (T63) -2070 (T73) -60120 (T97) Other T-scaling refer -6060 (T64) 20140 (T77) -6060 (T64) output Td resp.Tf Select according to ordering guide -1050 (T03) 080 (T21) 32120 (T90) ordering guide (Tdxx resp. Tfxx) 0100 (T05) -2080 (T24) 32132 (T96) Other T-fd/Tf-scaling reference	- •							ordering guide (Txx)
-6060 (T64) 20140 (T77) to page 146 Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Select according to ordering guide -1050 (T03) 080 (T21) 32120 (T90) ordering guide (Tdxx resp. Tf xx) 050 (T04) -4080 (T22) 32132 (T96) Other Td/Tf-scaling reference		-8020 (T63)	-2070	(T73)	-60120	(T97)		Other T-scaling refer
Scaling of Td/Tf-output -4060 (T02) 060 (T07) -6060 (T64) output Td resp.Tf Select according to ordering guide -1050 (T03) 080 (T21) 32120 (T90) ordering guide (Tdxx resp. Tfxx) 050 (T04) -4080 (T22) 32140 (T91) (Tdxx resp. Tfxx) 0100 (T05) -2080 (T24) 32132 (T96) Other Td/Tf-scaling reference		-6060 (T64)	20140	(T77)				, i i i i i i i i i i i i i i i i i i i
050 (T04) -4080 (T22) 32140 (T91) (Tdxx resp. Tfxx) 0100 (T05) -2080 (T24) 32132 (T96) Other Td/Tf-scaling refer	Scaling of Td/Tf-output	-4060 (T02)	060	(T07)	-6060	(T64)	output Td resp.Tf	
050 (T04) -4080 (T22) 32140 (T91) (Tdxx resp. Tfxx) 0100 (T05) -2080 (T24) 32132 (T96) Other Td/Tf-scaling refer		· · · ·		· · ·		· · · ·		-
		050 (T04)	-4080	(T22)				(Tdxx resp. Tfxx)
		0100 (T05)	-2080	(T24)	32132	(T96)		Other Td/Tf-scaling refe
								to page 146

1) Combination alarm output and plugs is not possible (with cable glands only) / combination alarm output and integrated power supply is not possible 2) Integrated power supply includes 2 plugs for power supply and outputs / further plug options are not possible

(HA050101)

(HA050104)

(D05M)

Accessories

- Ball valve set 1/2" ISO
- Ball valve set 1/2" NPT
- Display + housing cover in metal
- Display + housing cover in polycarbonate (D05P)
- Stainless steel sintered filter (HA010103)
- Interface cable for PCB (HA010304) - Interface cable for plug C06 (HA010311) - Bracket for installation onto mounting rails (HA010203)
 - (HA050308)
 - Sealing element

Order Example_

EE35-ME025HA03D05P01/BC5-T02-Td02

Housing:	metal housing
Туре:	pressure tight
Cable length:	2m (6.6ft)
Probe length:	200mm (7.9")
Pressure tight feedthrough:	1/2" male thread
Display:	with display
Alarm output:	without relay
Plug:	cable glands
Sensing probe:	interchangeable
Td Calibration:	standard
Supply voltage:	835V DC / 1230V AC

Output 1: Т Output 2: Τd Output signal: 0-20mA Measured value unit: metric Scaling of T-output: -40...60°C Scaling of Td-output: -40...60°C

EE371/EE372 Series

The exact monitoring of dew point temperature in compressed air systems, dryers for plastic and other industrial processes is becoming increasingly more important. EE371 series with a measuring range -80...60°C Td (-112...140°F Td) and

EE372 series with a measuring range -40...60°C Td (-40...140°F Td) are the ideal solution for such applications.

The core of the transmitter is the monolithic measurement cell type HMC01, developed by E+E Elektronik in thin-film technology.

An autocalibration procedure which is integrated in the device and years of experience in low humidity adjustment make an accuracy of $<2^{\circ}C$ Td ($\pm 3.6^{\circ}F$ Td) possible.

The compact construction in a robust aluminium housing and the numerous options allow easy mounting and many application possibilities.

Autocalibration_

Dew point temperatures in the range of -60...-20°C (-76...-4°F) at room temperature correspond to relative humidity values of 0.08...5.37% RH. The measurement of these low humidity values is not possible with conventional capacitive measurement methods. For the EE371/EE372 series a special autocalibration procedure is utilized to achieve high accuracy measurements at lowest dew points too.

Outputs_

- Model T: The transmitter has two freely selectable and scaleable outputs for dew point, frost point or ppm volume concentration.
- Model S: The switch with two relay outputs is designed for control and alarm purposes. The status for early warning and main alarm is indicated by LED's. Adjustment of the Td/Tf set point and hysteresis can be achieved with the optional configuration software.

Configuration Software_

The optional configuration software allows flexible and easy adjustment of the analogue resp. relay outputs to the respective requirements.

The adjustment / calibration of the transmitters can easily be performed.

Screw Connection for Mounting - 360° positionable.

The construction of this screw connection enables any position / rotation of the mounted transmitter. So an optimal position of the display resp. the cable outlet is guaranteed.

Typical Applications _

monitoring of compressed air systems refrigerant type dryer absorption dryer plastics dryer

_Features

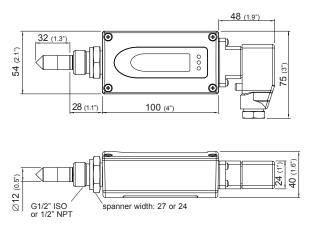
V1.3

measuring range -80...60°C Td (-112...140°F Td) accuracy of measurement ±2°C Td (±3.6°F Td) two Td/Tf alarm outputs autocalibration pressure tight up to 100 bar (1450psi)

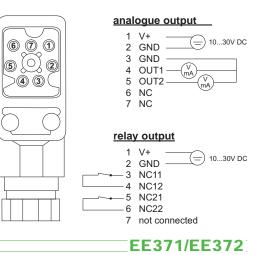
EE371/EE372

66

Compact Dew Point Temperature Transmitter / Switch



Technical Data


Dew point sensor	HMC01
Measuring range EE371	-8060°C Td (-112140°F Td)
EE372	-4060°C Td (-40140°F Td)
Accuracy	Traceable to intern. standards, administrated by NIST, PTB, BEV.
EE371	EE372
80	80
en 40	en 40
$\begin{array}{c} c_{0} \\ c_{0} \\$	$\begin{array}{c} 60 \\ 0 \\ -2$
⁴ -20	$\pm 2^{\circ}$ -20 Accuracy $\leq \pm 2^{\circ}$ C Td ($\leq \pm 3.6^{\circ}$ F)
Accuracy $\leq \pm 2^{\circ}$ C Td ($\leq \pm 3.6^{\circ}$ F)	limit of measuring range
limit of measuring range	-
-80 process temperature (°C)	-80 process temperature (°C)
Response time t _{an}	80 sec. -20° C Td $\rightarrow -40^{\circ}$ C Td (-4°F Td $\rightarrow -40^{\circ}$ F Td)
	10 sec. $-40^{\circ}C Td \rightarrow -20^{\circ}C Td$ (-40°F Td $\rightarrow -4^{\circ}F Td$)
Volume concentration	
Measuring range EE371	20200,000ppm
EE372	190200,000ppm
Accuracy at 20°C (68°F) and 1013mbar	5ppm + 9% of reading
EE37x-Tx two freely selectable and scaleable	0 - 1V / 0 - 5V / 0 - 10V ¹⁾ -1mA < I _L < 1mA
analogue outputs for Td, Tf, Wv	$4 - 20 \text{mA} / 0 - 20 \text{mA} = R_1 < 500 \text{ Ohm}^{1)}$
EE37x-Sx Alarm output	2 potential-free relays (NC)
	30V DC 0.6A / 35V AC 0.3A (resistive)
eral	
Supply voltage	1030V DC
Current consumption at 24V DC	voltage output: typ. 40mA / during autocalibration: 100mA
	current output: typ. 80mA / during autocalibration: 140mA
Pressure range System requirements for software	020bar (0290psi) / 0100bar (01450psi) WINDOWS 2000 or later; serial interface
Serial interface for configuration	RS232C
Housing / protection class	Al Si 9 Cu 3 / IP65
Electrical connection	7-pole industrial plug: DIN VDE 0627 / IEC 61984
	cable cross-section: 0.25 - 1 mm ²
	cable connection: PG 11
Sensor protection	stainless steel sintered filter
Working temperature range	probe: -4070°C (-40158°F)
	electronic: -4060°C (-40140°F)
	with LC display: -2050°C (-4122°F)
Storage temperature range Electromagnetic compatibility according to	-4060°C (-40140°F) EN 61326-1 EN61326-2-3 ICES-003 ClassB

1) minimum supply voltage 15V DC

Dimensions (mm)

Connection Diagram

Basic Sampling Cell

The basic sampling cell offers the possibility to integrate the EE371/EE372 into an existing or self-constructed sampling system.

1	=	G	1/2"	ISO
2	=	G	1/4"	
3	=	G	1/4"	

Sampling Cell with Quick Connector up to 10 bar (145psi).

The sampling cell is specially developed for use in compressed air lines and has a quick-connector suitable for standard compressed air connections. It allows for the cell to be fitted and removed without interrupting the process. The flow of gas can be adjusted using a bleed screw.

 $1 = G 1/2^{"}$ ISO 2 = Bleed screw

3 = Quick connector

1

Ordering Guide

Hardware Configuration							
Measuring range	-8060°C (-112140°F)					EE371-	EE371-
incubating funge	-4060°C (-40140°F)					EE372-	EE372-
Model	transmitter					Т	
	switch						S
Pressure range	up to 20bar (290psi)					E	E
-	up to 100bar (1450psi)					1	1
Pressure tight	G1/2" male thread					HA03	HA03
feedthrough	1/2" NPT thread					HA07	HA07
Display	without display						
	with display					D08	D08
Software Configuration							
Physical parameters	dew point temperature	Td	[°C/°F]	(C)	output/relay 1	select according to O	rdering Guide (C, D, P)
of the outputs/relays	frost point temperature	Tf	[°C/°F]	(D)	output/relay 2	select according to O	rdering Guide (C, D, P)
	volume concentration	Wv	[ppm]	(P)			
Type of output signals	0-1V					1	
	0-5V					2	
	0-10V					3	
	0-20mA					5	
	4-20mA					6	
Measured value units	metric / SI						
for T / Td / Tf	non metric / US					E01	E01
Scaling of Td/Tf-output	-4060 (Td/Tf02)		-8020	(Td/Tf63)	Other Td/Tf-scaling	select according to	
(in °C or °F)	-1050 (Td/Tf03)		-6020	(Td/Tf65)	refer to page 146	Ordering Guide (Tdxx / Tfxx)	
ppm range Wv	0100ppm (X01)						
	0500ppm (X02)		other meas	uring range: _		select according to	
	01000ppm (X03)					Ordering Guide	
Setting of alarm	standard						
output				relay	2: resis 2:		SP
	hyst	eresis	1:	hyste	resis 2:		

Accessories

- sampling cell with quick connector
- (HA050102) (HA050103)
- basic sampling cell - configuration software + interface cable (HA010604)

Order Example_

EE372-TEHA07D08/CD2-Td03

Measuring range: Model: Pressure range: up to 20bar (290psi) Pressure tight feedthrough: 1/2" NPT thread Display:

-40...60°C transmitter with display

EE371/EE372

- stainless steel sintered filter (HA010103) - display (D08)

Output 1: Output 2: Output signal: Measured value unit: Scaling of output:

Τd Τf 0-5V metric -10...50°C

EE375

EE375 Series

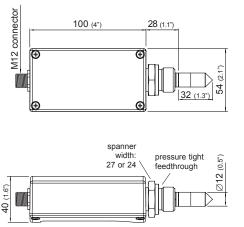
Compact Dew Point Temperature Transmitter for OEM Applications

The exact monitoring of dew point temperature in compressed air systems, dryers for plastic and other industrial processes is becoming increasingly more important.

The EE375 is designed for measurement of low dew points in OEM applications down to -60° C (-80° C).

The core of the transmitter is the monolithic measurement cell type HMC01 developed by E+E Elektronik in thin-film technology.

An autocalibration procedure which is integrated in the device and years of experience in low humidity adjustment make an accuracy of $<2^{\circ}C$ Td ($\pm 3.6^{\circ}F$ Td) possible.


The transmitter has one analogue output for dew point, frost point or ppm volume concentration.

Technical Data_

Measuring Quantities

Dew point (Td)	
Dew point sensor	HMC01
Measuring range	-8060°C Td (-112140°F Td)
Accuracy	80
Traceable to intern. standards, administrated by NIST, PTB, BEV	$\begin{array}{c} \textbf{(j)} & \textbf{(j)} \\ \textbf{(j)} & \textbf{(j)} \\ (j)$
Response time t ₉₀	80 sec. -20° C Td $\rightarrow -40^{\circ}$ C Td (-4°F Td $\rightarrow -40^{\circ}$ F Td) 10 sec. -40° C Td $\rightarrow -20^{\circ}$ C Td (-40°F Td $\rightarrow -4^{\circ}$ F Td)
Volume concentration	
Measuring range	20200 000ppm
Accuracy at 20°C (68°F) and 1013mbar	5ppm + 20% of reading
itputs	
Selectable and scaleable	0 - 10V -1mA < I _L < 1mA
analogue output for Td, Tf, Wv	4 - 20mA R _L < 500 Ohm
neral	
Supply voltage	2128V DC
Current consumption at 24V DC	voltage output: typ. 40mA / during autocalibration: 100mA current output: typ. 80mA / during autocalibration: 140mA
Pressure range	020bar (0290psi)
System requirements for software	WINDOWS 2000 or later; serial interface
Serial interface for configuration	RS232C
Housing / protection class	Al Si 9 Cu 3 / IP65
Electrical connection	M12 connector
Sensor protection	stainless steel sintered filter
Working temperature range	probe: -4070°C (-40158°F) electronic: -4060°C (-40140°F)
Storage temperature range	-4060°C (-40140°F)
Electromagnetic compatibility according to	EN 61326-1 EN61326-2-3 ICES-003 ClassB Industrial Environment FCC Part15 ClassB

Dimensions in mm.

Connection Diagram

Male connector

(1)

1...V+ 2...output 1 3...GND

Basic Sampling Cell_

The basic sampling cell offers the possibility to integrate the EE375 into an existing or self-constructed sampling system.

1 = G 1/2" ISO 2 = G 1/4" 3 = G 1/4"

Sampling Cell with Quick Connector up to 10 bar (145psi).

The sampling cell is specially developed for use in compressed air lines and has a quick-connector suitable for standard compressed air connections. It allows for the cell to be fitted and removed without interrupting the process. The flow of gas can be adjusted using a bleed screw.

1 = G 1/2" ISO 2 = Bleed screw 3 = Quick connector

Ordering Guide

				EE375-
Hardware Configuration	on			
Model	transmitter			т
Pressure range	up to 20bar (290psi)			E
Pressure tight	G1/2" male thread			HA03
feedthrough	1/2" NPT thread			HA07
	5/8"-18 UNF			HA08
Software Configuration	n			
Physical parameters	dew point temperature	Td [°C/°F]	output	С
of the output	frost point temperature	Tf [°C/°F]		D
	volume concentration	Wv [ppm]		Р
Type of output signal	0-10V			3
	4-20mA			6
Measured value units	metric / SI			
	non metric / US			E01
Scaling of Td/Tf-output	-4060 (Td/Tf02)	-8020 (Td/Tf63)	Other Td/Tf-scaling	Select accorcding to
(in °C or °F)	-1050 (Td/Tf03)	-6020 (Td/Tf65)	refer to page 146	order guide (Tdxx or Tfxx)
ppm range Wv	0100ppm (X01)			select according to
	0500ppm (X02)			Ordering Guide
(01000ppm (X03)	other measuring range: _		

Order Example_

EE375-TEHA07/C3-Td03

Model:transmitterPressure range:up to 20bar (290psi)Pressure tight feedthrough:1/2" NPT threadOutput:Td

Output signal: Measured value unit: Scaling of output: 0-10V metric -10...50°C

3

EE45-01 Series

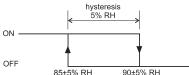
EE45-01 condensation monitors are used to monitor the formation of condensation on chilled ceilings and to prevent condensation at critical spots of heating-, ventilation- and air conditioning systems. It is also used as a dew point monitor for systems operating near the dewpoint.

Because of the temperature coupling between the condensation monitor and the environment, the relative humidity is a measure for the dew point. The condensation monitor measures the relative humidity near the dew point using its high-quality capacitive RH sensor. At reaching the switching point of 90% RH the output will provide an early warning signal for the initiation of control steps (increasing the initial water temperature, reducing the cooling capacity, switching on the heating, etc...).

Condensation Monitor

A special coating protects electronics and sensor against contamination. The EE45-01 series can be mounted on pipes, ducts and walls.

Typical Applications


chilled ceilings heating-, ventilation- and air conditioning systems

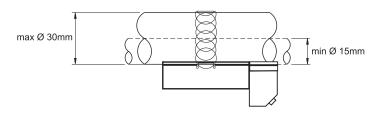
_Features

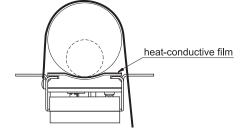
early detection of condensation danger compact design fast response time protection against contamination for sensor & electronics by a special coating simple and easy mounting

Technical Data_

Humidity sensor	HC103	
Working range	10100% RH	
Output	Photo MOS Relays (NC)	
Switching point at 25°C (77°F)	90±5% RH	
	hysteresis	

Max. switch voltage	40V AC/DC
Max. switch current	200mA (peak AC and DC value)
Output ON resistance	typ. 0.8 Ohm max. 4.5 Ohm
Current consumption	< 10 mA _{eff}
Supply voltage	24V AC/DC ±20%
Response time at change of duct resp. wall temperature	t ₉₀ < 3 min.
Response time at change of rel. humidity	t ₉₀ < 25 sec.
Connection	pluggable terminal max. 1.5mm ²
Sensor / electronic protection	by special coating (permeable for water vapour)
Electromagnetic compatibility according	EN61326-1 EN61326-2-3 CE
Temperature range	working temperature range050°C (32122°F)storage temperature range-2070°C (-4158°F)
Electromagnetic compatibility according	EN61326-1 EN61326-2-3 Industrial Environment working temperature range 050°C (32122

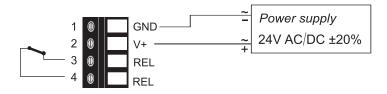



Dimensions (mm)_

1 mm = 0.03937" / 1" = 25.4 mm

_Installation

Pipe / Duct mounting



Wall mounting / versions

Connection Diagram

Ordering Guide

Condensation Monitor EE45-01

(EE45-01)

EE45-01

Humidity Sensor Elements

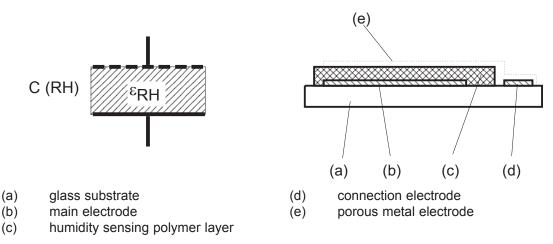
HC105/109 HC103M2 HC104-Kxx HC201

The HC Series of E+E Elektronik are capacitive humidity sensors produced in thin film technology.

Due to careful selection of materials, to state-of-the-art production technology and to long experience of E+E in thin film technology, all HC humidity sensors show an excellent long term stability, highest reproducibility of the sensor characteristic, are wettable and very resistant to pollutants.

They are used in all E+E standard transmitter series, as well as in a large number of customised and OEM products from mass- to high-end applications.

The excellent linearity enables the use of a simple, cost-effective oscillator circuitry with an easy and accurate calibration procedure.


Extensive evaluation results such as from various long term tests or resistance to most chemicals of practical importance are available.

Construction_

A capacitive humidity sensor is in fact a plate capacitor.

A polymer layer is placed between a metal electrode and a coated glass substrate. The dielectric permittivity ϵ of the polymer depends on its water content.

schematic construction of an E+E humidity sensor

For an optimal humidity exchange between the polymer layer and the surrounding air, the metal electrode is a porous layer of 0.1 to 1 µm produced by a special production process. The absence of additional insolation layers leads to a high sensitivity. (refer to characteristics of E+E humidity sensors)

The capacity of the sensor:

- C sensor capacity at relative humidity RH
- ϵ_{RH} relative dielectric permittivity, depending on humidity
- ε_{RH} = 3 (at 0%RH)...3.9 (at 100%RH)
- ε₀ permittivity of vacuum
- A area of the electrodes
- d distance between the electrodes
- RH relative humidity

$$\mathbf{C}(\mathbf{RH}) = \frac{\boldsymbol{\varepsilon}_{\mathbf{RH}} \cdot \boldsymbol{\varepsilon}_{\mathbf{O}} \cdot \mathbf{A}}{\mathbf{d}}$$

Definitions_

Working Range___

The working range is the maximum range for humidity and temperature wherein specified data and tolerances are valid. The interdependence of humidity and temperature is of importance. (refer to data for working range).

Nominal Capacitance_____

The nominal capacitance is the capacity of the sensor at a certain relative humidity, at temperatures of 20°C (68°F) or 30°C (86°F) and operating frequency of 20kHz.

Sensitivity_____

The sensitivity is the variation of the capacitance per % RH. It is measured at 33% RH and 76% RH.

Linearity Error

The linearity error is the maximum deviation of the sensor characteristic from the best linear approximation.

Hysteresis_

The hysteresis is the maximum difference between two cycles 15 - 95% RH and 95 - 15% RH. The cycles are performed in steps of 10% RH with a stabilisation time of 1 hour after each step.

Temperature Dependence

The temperature dependence is the deviation in % RH per°C (°F) at different humidity and temperature values.

Response Time t₉₀_____

The response time t_{90} is the time the sensor needs to reach 90 % of the final value for a 0 - 80 % step of relative humidity.

Loss Tangent ____

The loss tangent quantifies the resistive value of the impedance. It is measured at 25°C (77°F), 76%RH and at operating frequency 20 kHz.

Maximum Supply Voltage

It is given as peak to peak voltage. DC voltage components on the sensing element are not allowed.

Operating Frequency_____

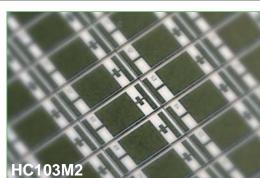
The HC sensors can operate within the specified frequency limits. For best results we recommend an operating frequency of 20 kHz.

All specified technical data are measured at an operating frequency 20kHz.

General Info HC Sensors

75

HC105/109 - SMD Version_


Based on the high-end HC1000 and HC101, HC105/109 was developed to meet the demands of automatic assembly lines for mass production at a competitive price.

Typical applications are automotive or home appliances.

HC105/109 sensors are positioned on the PCB at the same time as other SMD components and soldered using the reflow soldering method. Their small dimensions allow an easy and space saving design.

They show the same advantages as HC1000 and HC101, such as high reproducibility of the sensor data and outstanding linearity over the whole humidity range.

The temperature dependence is also highly reproducible and allows software temperature compensation. This means high accuracy over a wide temperature range, which is essential for instance to calculate dew point temperature.

HC103M2 _

HC103M2 is based on the design of the HC103 series, nevertheless with relevantly shorter response time (t_{90}). This has been reduced to less than 3 seconds, which is twice faster than HC103.

The very short response time together with outstanding linearity over the entire working range and the highly reproducible temperature dependence are ideal for the use of HC103M2 in high end meteorological applications such as weather balloons.

HC104-Kxx - Interchangeable SMD Version_

HC104-Kxx is the latest development of the well proven HC103 SMD-mounted sensor. Additionally to the HC103 features, the dispersion of nominal capacity of HC104-Kxx is reduced to a minimum by a special laser trimming process in a lot of applications. Time consuming humidity calibration is not necessary any longer. The result is an interchangeable sensor with excellent price/performance ratio, ideal for mass production in automatic assembly lines.

HC201 - For Cost-Effective Applications_

With the HC201 offers E+E Elektronik a high-quality and cost-effective humidity sensor in thin layer technology. Mass applications in indoor climate controls are only one of many possible applications of the HC201 series.

HC201/H is a version with a plastic housing which offers easy mounting on PCBs.

HC105/HC109

SMD Humidity Sensors for Mass Applications

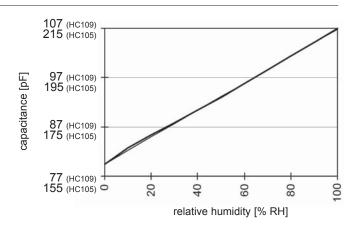
Typical Applications

automotive - air conditioning home appliances photocopy machines SMD mounting high reproducibility wettable

Features

very good long term stability small size construction

Technical Data


Sensor		HC105	HC109
Nominal capacitance	ce C ₀ (at 30°C / 86°F)	160 ± 16 pF	80 ± 12 pF
	C ₇₆ (at 30°C / 86°F)	201.6 ± 20.3 pF	100.8 ± 15.1 pF
Response time t ₉₀	-	< 6 sec.	< 6 sec.
Sensitivity		0.55 pF /% RH	0.27 pF /% RH
Temperature depen	Idence	dC = -0.0019*RH*(T-30°C) [pF]	dC = -0.00095*RH*(T-30°C) [pF]
Working range	humidity	0100% RH	0100% RH
	temperature	-40120°C (-40248°F)	-40120°C (-40248°F)
Linearity error	(098% RH)	< ± 1.5% RH	< ± 1.5% RH
Hysteresis		1.7 ± 0.15% RH	1.7 ± 0.15% RH
Long term stability at 2	20-30°C (68-86°F) / 20-80%RH	drift < 1.5 % / year	drift < 1.5 % / year
Loss tangent		< 0.05 typical	< 0.05 typical
Maximum supply vo	oltage (no DC voltage)	5V max (Upp)	5V max (Upp)
Maximum DC volta	ge	< 5mV	< 5mV
Operating frequenc	y .	10100 kHz,	10100 kHz,
		recommended 20kHz	recommended 20kHz
Packaging	tray 101.6x101.6 mm (4x4")	420 sensors	not available
	tape and reel	refer to ordering guide	refer to ordering guide

Characteristics.

The average increase of capacitance over the working range is 55pF (HC105) resp. 27.5pF (HC109). For the range of 0–98% RH linear approximation is possible, errors will be lower than $< \pm 1.5\%$ RH.

The sensor characteristic is determined by the following linear formula:

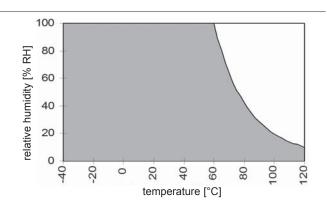
 $C(RH) = C_0 * [1+HC_0 * RH]$ with HC_0 = 3420 ± 191 ppm /% RH

For high accuracy requirements, the sensitivity is determined by the following polynomial:

 $C(RH) = C_0 * [1 + HC_0 * RH + K(RH)]$

whereby:

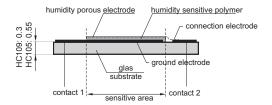
 $K(RH) = A_1^*RH + A_2^*RH^{1.5} + A_3^*RH^2 + A_4^*RH^{2.5}$ $A_1 = 2.6657E^{-3} \qquad A_2 = -9.6134E^{-4}$ $A_3 = 1.1272E^{-4} \qquad A_4 = -4.3E^{-6}$


HC105/HC109

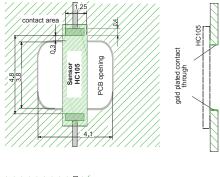
Working Range_

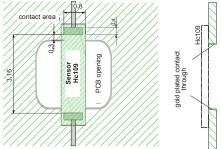
The working range of the humidity sensors HC105/ HC109 is shown with regard to the humidity / temperature limits.

Although the sensors would not fail beyond the limits, the specification is guaranteed only within the working range.


In applications with high humidity at high temperatures the time factor shall be considered.

Dimensions (mm)





Mounting Instructions

ELEKTRONIK

To allow full access of the air, the humidity sensor should be positioned over an opening in the printed circuit board (PCB).

False readings because of humidity assimilation at the front side of the PCB should be avoided as much as possible by using gold-plated-through holes.

Assembling and Soldering

HC105/HC109 sensor series are designed for SMD automatic assembling with subsequent reflow-soldering.

(no code)

(TR0,5)

(TR2,5)

(TR10)

(TR1)

Recommended SMD equipment:

capacitive humidity sensor 160 pF (105)

capacitive humidity sensor 80 pF

Automatic tooling machine with suction pipette

(109)

- Optical control for sensor identification

Ordering Guide_

TYPE

__Order Example

HC105TR1 SMD humidity sensor

Type: HC105 Packaging: 1000 sensors per reel

PACKAGING

tray (for HC105 only)

500 sensors per reel

1000 sensors per reel 2500 sensors per reel

10000 sensors per reel

HC104-Kxx

xx...humidity calibration point

Interchangeable SMD Humidity Sensors for Mass Applications

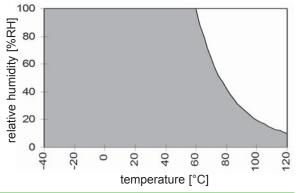
Typical Applications

_Features

mass appliances photocopy machines automotive - air conditioning interchangeable inexpensive, easy humidity calibration best accuracy without calibration SMD compatible outstanding long term stability wettable

Technical Data

Sensor	HC104-K00	HC104-K25	HC104-K50	HC104-K75
Calibration point	0% RH	25% RH	50% RH	75% RH
Nominal capacity at calibration point [pF]	140	152.5	163.8	175.9
Interchangeability	6,0 5,5 5,0 4,5 4,5 4,5 4,5 4,5 4,5 5,0 4,5 5,0 5,0 4,5 5,0 5,0 4,5 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5	HC104-K00 HC104-K75 HC104-K75 HC104-K75 HC104-K75	C104-K25 C104-K50 50 60 70 uumidity [% RH]	
		Telative I		

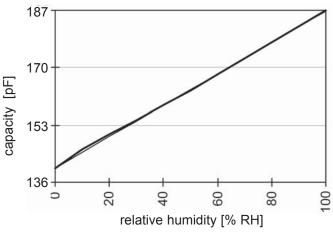

Sensitivity		0.48 pF / % RH	
Temperature de	ependence	dC = -0.00166*RH*(T-30°C) [pF]	
Working range	humidity	0100% RH	
	temperature	-40120°C (-40248°F)	
Linearity error (0 98% RH)	< ± 1.5% RH	
Hysteresis	•	1.7 ± 0.15% RH	
Response time	t _{ao}	< 6 s	
Long term stabilit	y at 20-30°C (68-86°F) / 20-80% RH dr	ift < 1.5 % / year	
Loss tangent		< 0.05 typical	
Maximum supp	ly voltage (no DC voltage)	5 V max (Upp)	
Maximum DC v	oltage	< 5 mV	
Operating frequ	iency	10100 kHz, recommended 20kHz	
Packaging	tray 101.6x101.6 mm (4x4")	240 sensors	
	tape and reel	refer to ordering guide	

Working Range_

The working range of the humidity sensors HC104-Kxx is shown with regard to the humidity / temperature limits.

Although the sensors would not fail beyond the limits, the specification is guaranteed only within the working range.

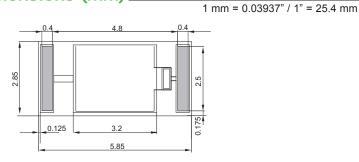
In applications with high humidity at high temperatures the time factor shall be considered.

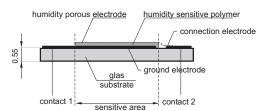

TRONIK

Characteristics

The average increase of capacitance over the working range is 55pF. For the range of 0-98% RH linear approximation is possible, errors will be lower than ± 1.5% RH.

The sensor characteristic is determined by the following linear formula:


 $C(RH) = C_0 * [1+HC_0 * RH]$ with HC₀ = 3420 ± 191 ppm /% RH



For high accuracy requirements, the sensitivity is determined by the following polynomial:

 $C(RH) = C_0 * [1 + FK_0 * r.F. + K(RH)]$ $K(RH) = A_1 * RH + A_2 * RH^{1,5} + A_3 * RH^2 + A_4 * RH^{2,5}$ whereby: $A_1 = 2,6657E^{-3}$ $A_2 = -9,6134E^{-4}$ $A_4 = -4,3E^{-6}$ $A_3 = 1,1272E^{-4}$

Dimensions (mm)

Mounting Instructions

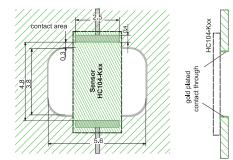


Fig.1

To allow full access of the air, the humidity sensor should be positioned over an opening in the printed circuit board (PCB). - Fig.1

False readings because of humidity assimilation at the front side of the PCB should be avoided as much as possible by using gold-plated-through holes.

Ordering Guide_

TYPE		PACKAGING	
Interchangeable capacitive humidity sensor 140 pF, calibration point 0% RH Interchangeable capacitive humidity sensor 152.5 pF, calibration point 25% RH Interchangeable capacitive humidity sensor 163.8 pF, calibration point 50% RH Interchangeable capacitive humidity sensor 175.9 pF, calibration point 75% RH	(104-K00) (104-K25) (104-K50) (104-K75)	tray (240 sensors) 500 sensors per reel 1000 sensors per reel 2500 sensors per reel	(no code) (TR0,5) (TR1) (TR2,5)
		10000 sensors per reel	(TR10)

Order Example

HC104-K50TR2.5 SMD Humidity Sensor

Type: Packaging: HC104-K50 2500 sensors per reel

HC201

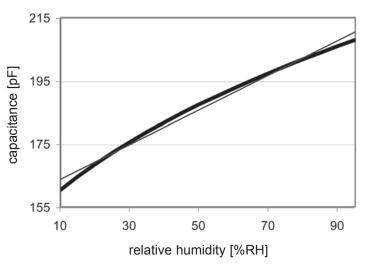
Humidity Sensors for HVAC Applications

Typical Applications

Features

HVAC hand helds humidifiers dehumidifiers high repeatability high sensitivity wettable very good long term stability good resistance to pollutants small size construction

Technical Data

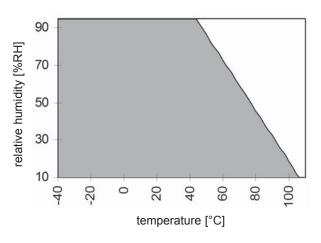

Nominal capacitance C ₇₆ (at 20°C / 68°F)	200 ± 30 pF
Sensitivity	0.6 pF / % RH
Working range	Humidity 1095% RH
	Temperature -40110°C (-40230°F)
Linearity error (2090% RH)	< ± 2% RH
Hysteresis	2.0 ± 0.3% RH
Response time t ₉₀	< 15 sec
Temperature dependence [%RH /°C]	$\Delta RH = g * RH * (T - 20)$ $g = -0.004 \pm 10 \%$
Long term stability at 20-30°C (68-86°F) / 20-80% RH	drift < 1.5 % / year
Loss tangent	< 0.1 typical
Maximum supply voltage (no DC voltage)	5 V max (Upp)
Maximum DC voltage	< 5 mV
Operating frequency	10100 kHz, recommended 20 kHz
Material connection	phosphor bronze with tin coating

Characteristics_

The average increase of capacitance over the working range is 50pF. For the range of 20–90% RH, linear approximation is possible, errors will be lower than $\pm 2\%$ RH.

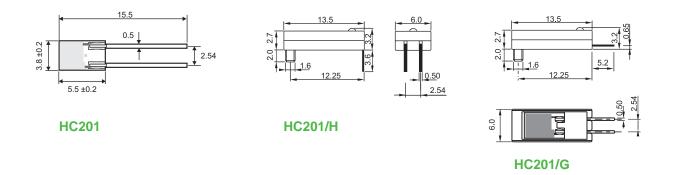
The sensor characteristic is described by the following linear formula:

 $C(RH) = C_{76} * [1 + HK * (RH - 76)]$ with HK = 2700 ± 250 ppm /% RH



Working Range_

The working range for the humidity sensor HC201 is shown with regard to the humidity / temperature limits.


Although the sensors would not fail beyond the limits, the specification is guaranteed only within the working range.

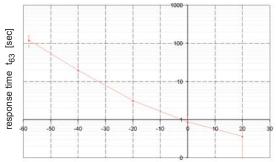
In applications with high humidity at high temperature the time factor shall be considered.

Dimensions (mm)_

1 mm = 0.03937" / 1" = 25.4 mm

Ordering Guide_____

MODEL	ТҮРЕ	
HC	capacitive humidity sensor 200 pF	(201)
	capacitive humidity sensor 200 pF with PC housing for mounting on the printed ciruit board	(201/H)
	capacitive humidity sensor 200 pF with PC housing	(201/G)
НС		



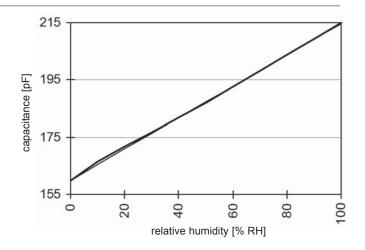
HC103M2

Fast High End Humidity Sensors for Radiosondes / Registering Balloons

Technical Data

Nominal capacitance C ₀ (at 30°C / 86°F)	160 ± 40 pF
Sensitivity	0.55pF /% RH
Working range humidity	0100% RH
temperature	-80120°C (-112248°F)
Linearity error (098% RH)	< ± 2% RH
Hysteresis	1.9 ± 0.25% RH
Response time RH t ₆₃	

		temperature [°C]		
Temperature dependence ¹⁾		dC = -0.0019*RH*(T-30°C) [pF]		
Loss tangent	-	< 0.05		
Maximum su	pply voltage	5V max (UPP)		
Maximum DC	voltage	< 5mV		
Operating fre	quency	10100 kHz, recommended 20kHz		
Packaging tray 101.6x101.6 mm (4x4")		240 sensors		
	tape and reel	refer to ordering guide		


1) more details for t < -20°C on request

Characteristics_

The average increase of capacitance over the working range is 55pF. For the range of 0–98% RH linear approximation is possible, errors will be lower than $< \pm 2\%$ RH.

The sensor characteristic is determined by the following linear formula:

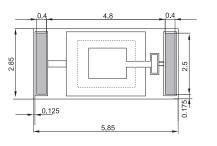
 $C(RH) = C_0 * [1+HC_0 * RH]$ with HC₀ = 3420 ± 250 ppm /% RH

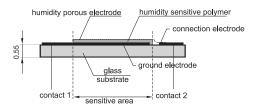
For high accuracy requirements, the sensitivity is determined by the following polynomial:

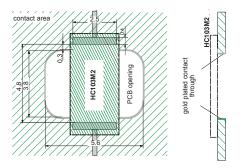
 $C(RH) = C_0 * [1 + HC_0 * RH + K(RH)]$

whereby:

HC103M2




1 mm = 0.03937" / 1" = 25.4 mm


Mounting Instructions

EKTRONIK

Dimensions (mm)_

To allow full access of the air, the humidity sensor should be positioned over an opening in the printed circuit board (PCB).

False readings because of humidity assimilation at the front side of the PCB should be avoided as much as possible by using gold-plated-through holes.

Assembling and Soldering_

HC103M2 sensor series are designed for SMD automatic assembling with subsequent reflow-soldering. For more details please refer to mounting instructions.

Recommended SMD equipment:

- Automatic tooling machine with suction pipette
- Optical control for sensor identification

Ordering Guide_____

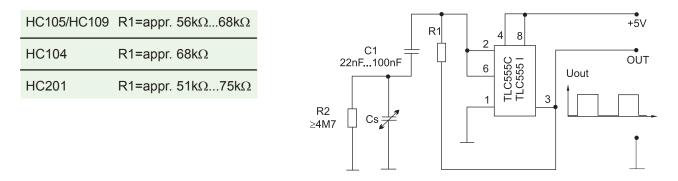
TYPE		PACKAGING	
HC103M2	(103M2)	tray (240 sensors)	(no code)
		500 sensors per reel	(TR0,5)
		1000 sensors per reel	(TR1)
		2500 sensors per reel	(TR2,5)
		10000 sensors per reel	(TR10)
HC			

Order Example

HC103M2TR1

Туре:	HC103M2
Packaging:	1000 sensors per
	reel

Handling Instructions


Cleaning____

If necessary, the HC sensors can be cleaned by shaking them in pure isopropylalcohol, industrial grade. Do not touch or rub the sensor surface. After cleaning with isopropylalcohol, immerse them in water and let them dry.

Test Circuitry_

This test circuitry is in fact an oscillator. Changes of the sensor capacitance modify the frequency of the output signal. The operating frequency can be selected by the R1¹ resistor (trimmer).

For example, an operating frequency of appr. 50kHz at 76% RH can be set with the following values of R1:

1) Please note that the exact value of R1 depends on the tolerances of Humidity Sensors, the PCB Layout, and the TLC555 tolerances.

Calibration_

Each sensor is tested at reference conditions for humidity. The calibration point for the humidity circuitry should be chosen according to the application and typical operation range. If the circuitry has no linearisation we recommend calibration at 33 and 76%. High humidity levels should not be chosen, as wetting of the element can cause misreadings during the calibration procedure.

For reliable check the E+E special calibration set is available. (refer to data for "Humidity Calibration Set")

As a professional alternative for check and calibration we recommend the use of the E+E high accuracy humidity calibrator HUMOR 20. (refer to data for "HUMOR 20")

v2.1

EE75 Series

High-Precision Air / Gas Velocity Transmitter for Industrial Applications

The EE75 series air velocity transmitters were developed to obtain accurate measuring results over a wide range of velocities and temperatures.

A high-quality hot film sensor element based on cutting-edge thin film technology ensures maximum sensitivity, even at lowest mass flows. At the same time, the innovative probe design produces reliable measuring results at high flow velocities of up to 40m/s (8000ft/min).

The integrated temperature compensation minimises the temperature cross-sensitivity of the EE75 series which, combined with the robust mechanical design, allows it to be used at process temperatures between -40 to +120°C (-40 to 248°F).

In addition to air velocity and temperature values, the transmitter calculates the volumetric flow rate in m³/min or ft³/min. The cross section of the duct needs to be determined for this purpose and the volumetric flow rate can be displayed and directed to one of the analogue outputs.

The configuration software included in the scope of supply allows to choose the appropriate output parameter and freely scale the display range and signal level of the two analogue outputs. In addition user-friendly calibration of the air velocity and temperature and the adjustment of key parameters (e.g. response time of the velocity measurement, low flow cut-off points, etc.) are supported as well.

An optional illuminated display with two control buttons integrated in the cover is available. In addition, this enables changes of the configuration to be made directly on the unit.

The EE75 series has a robust metal housing to protect against possible damage in rough industrial environments. There are five different models, providing a comprehensive range of mounting options:

- Model A for wall mounting
- Model B for duct mounting
- Model C with remote probe
- Model E with remote probe, pressure-tight up to 10bar (145psi)
- Model P for duct mounting, pressure-tight up to 10bar (145psi)

The EE75 series can be used to measure the velocity of other gasses as well, although a correction has to be applied to the unit at the factory.

Typical Applications_

- monitoring incoming and outgoing air (energy management) in HVAC applications
- filter monitoring and laminar flow control in cleanrooms
- exhaust systems, exhaust hoods and glove boxes in the pharmaceutical,

bio and semiconductor industries

- mass flow measurement during incineration processes
- monitoring and measurement of compressed air systems
- air conveying systems
- wind tunnels and climate simulators

Features

v1.5

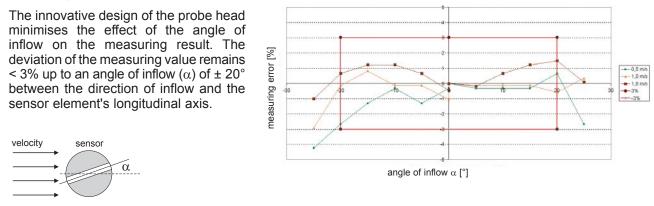
high accuracy working range 0...40 m/s (0...8000ft/min) and -40...120°C (-40...248°F) measurement of air velocity and temperature calculation of volumetric flow rate low dependence on angle of inflow probe diameter 8mm (0.3") remote probe up to 10m (32.8ft) easy mounting and maintenance correction for pressure, humidity and media low flow cut-off pressure tight up to 10bar (145psi) SI and US units selectable

Te Me

asuring value		
Air velocity		
Working range	0 2m/s (0400ft/min)	
	0 10m/s (02000ft/min)	
	0 40m/s (08000ft/min)	
Accuracy ¹⁾ in air at 25°C (77°F) ²⁾	0.06 2m/s (12400ft/min)	± 0.03m/s / 6ft/min
at 45% RH and 1013hPa	0.1510m/s (302000ft/min)	
		± (0.20m/s / 40ft/min + 1 % of measuring value
Uncertainty of factory calibration ¹⁾		min. 0.015m/s (3ft/min))
		g value / °C
Temperature dependence probe	± (0.1% of measuring value	-
Dependence	of angle of inflow:	
		< 3%
Response time $\tau_{90}^{3)}$	< 1.540s (configurable)	
Temperature	(°)° ,	
Working range	probe:	-40120°C (-40248°F)
	probe cable:	-40105°C (-40221°F)
	electronic:	-4060°C (-40140°F)
	electronic with display:	
Accuracy at 20°C (68°F)	±0.5°C (±0.9°F)	
Temperature dependence electronics		
Response time $\tau_{90}^{3)}$	10s	
tputs		
output signals and display ranges a	are freely eacleship (acc rer	
voltage) $-1\text{mA} < I_{L} < 1\text{mA}$
current (3-wire)	0-20mA (e.g: 4-20mA etc.)	
v-scaling	02 / 10 / 40m/s (0400 / 2000 /	-
T-scaling	-40120°C (-40248°F)	80001011111)
Vol-scaling	010000m ³ /min (0353147ft	3/min)
•		///////
neral		
	24V DC/AC ± 20%	
		(with display)
Connection Electromagnetic compatibility	screw terminals max. 1.5m EN61326-1 EN61326-	
Electromagnetic compatibility	Industrial Environment	
Brosouro rongo		
Pressure range Material	Model E and P pressure tig housing / protection class:	
Material	•	
	measuring probe:	stainless steel
Svotom requiremente	measuring head:	PBT (polybuthylenterephthalat)
System requirements for configuration software	Windows 2000 or Windows	YP
Interface	USB 1.1	

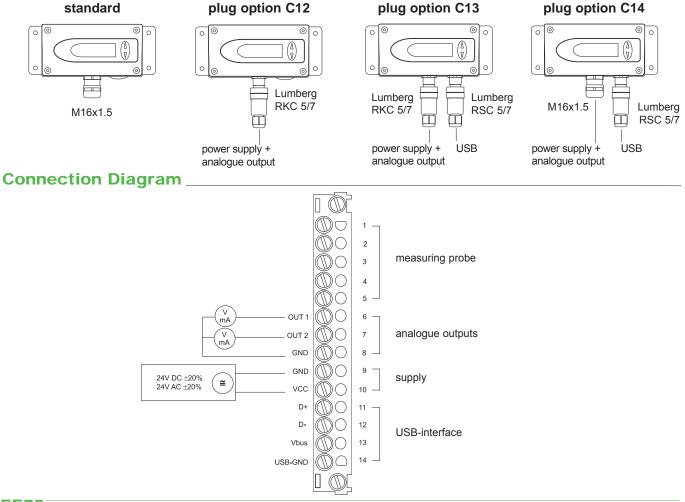
3) Response time τ_{90} is measured from the beginning of a step change to the moment of reaching 90% of the step.

Configuration Software


An easy setup of the EE75 can be made via standard USB interface and the software included in the scope of supply.

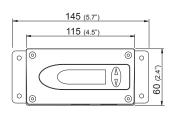
The user can easily set the response time, correct for the gas (air) pressure, perform an one or two point adjustment and define the duct cross section for the volumetric flow rate.

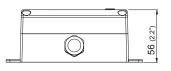
Angular Dependence

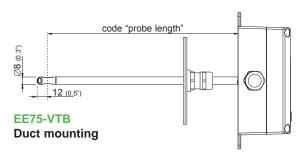

Low flow cut-off

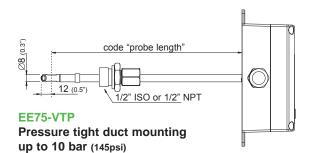
Small temperature differences in shut-off pipes and ducts can cause minimal flows. Even these would be detected and measured by the EE75. The resulting fluctuations in the output signal can be suppressed by the low flow cut-off. Cut-off point and switching hysteresis can be specified using the configuration software.

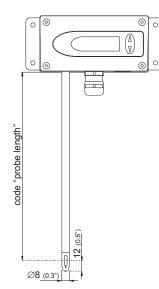
Calculation of volumetric flow_

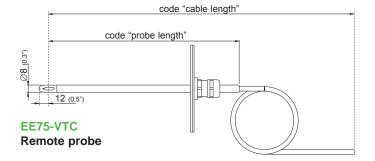

The EE75 measures air velocity in m/s or ft/min. The configuration software can be used to enter the crosssection. This enables the transmitter to calculate the volumetric flow rate in m³/min or ft³/min. The data can be displayed and directed to one of the analogue outputs.

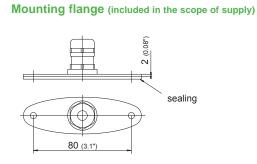

Connection versions

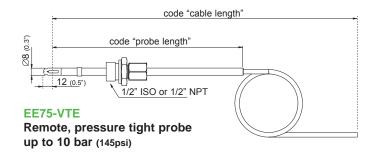





Dimensions in mm_







EE75-VTA Wall mounting

Ordering Guide_____

					TH	Th.		TH.	fh.	
					th ₃	17 S.L.	5.1	EF15.V		50
Hardware Configu	ration									
Output	010V					3	3	3	3	3
·	420mA					6	6	6	6	6
Working range	02m/s (0400ft/min)					1	1	1	1	1
	010m/s (02000ft/min)					2	2	2	2	2
	040m/s (08000ft/min)					3	3	3	3	3
Probe length	200mm (7.9")					5	5	5	5	5
-	400mm (15.8")					6	6	6	6	6
	600mm (23.6")					7	7	7	7	7
Cable length	2m (6.6ft)							K200	K200	
-	5m (16.4ft)							K500	K500	
	10m (32.8ft)							K1000	K1000	
Display	without display									
-	with display					D06	D06	D06	D06	D06
Pressure tight	1/2" ISO thread								HA03	HA03
feedthrough	1/2" NPT thread								HA07	HA07
Plug	cable glands									
	1 plug for power supply	and outputs				C12	C12	C12	C12	C12
	2 plug for power supply	/ outputs and USB				C13	C13	C13	C13	C13
	1 plug for USB					C14	C14	C14	C14	C14
Software Configura Physical					output 1			t accordi g Guide (
parameters of	Temperature	T [°C]	(B)				Selec	t accordi	na to	
outputs	Velocity Volume	v [m/s] ⊽ [m³/min]	(N) (O)		output 2			g Guide (
Measured value	metric / SI	v [m./min]	(0)							
units	non metric / US					E01	E01	E01	E01	E01
Scaling of v-output	00,5 (V01)	030 (V10)		02000	(V18)					
in m/s or ft/min	01 (V02)	035 (V11)		03000	(V19)					
	01,5 (V03) 02 (V04)	040 (V12)		04000	(V20)		Salaa	t accordi	na to	
	02 (V04) 05 (V05)	0100 (V13) 0200 (V14)		05000 06000	(V21) (V22)			ing Guide		
	010 (V06)	0300 (V15)		07000	(V23)				(1),	
	015 (V07)	0400 (V16)		07800	(V24)					
	020 (V08)	01000 (V17)		08000	(V25)					
Cooling of Tout 1	025 (V09)	20 400 (700)		0 00	(T04)					
Scaling of T-output in °C or °F	-4060 (T02) -1050 (T03)	-30120 (T09) -20120 (T10)		080 -4080	(T21) (T22)		Cole	t opport	na to	
	050 (T03)	-20120 (110) -1070 (T11)		-4080	(T24)			t accordi		
	0100 (T05)	-40120 (T12)		-2060	(T25)		01401		(176)	
	060 (T07)	20120 (T15)		-3050	(T45)	Oth	er T sca	ling refer	to page [·]	146
	-3070 (T08)	-3060 (T20)		-2050	(T48)					
	Air						1	1		1
Measurement media	Nitrogen N					в	в	в	в	В

Order Example_____

EE75-VTB325C12/BN-V05-T07

Model:	duct mounting
Output:	010V
Working range:	010m/s (02000ft/min)
Probe length:	200mm (7.9")
Display:	without
Plug:	1 plug for power supply and outputs
Output 1:	T
Output 2:	v
Measured value units:	metric / SI
v-Scaling:	05m/s
T-Scaling:	060°C
Measurement media:	air

ELEKTRONIK®

EE66 Series

Air Velocity Transmitter for Measurement of Lowest Velocity

EE66 air velocity transmitter series are designed for high accuracy measurement of lowest air velocities. It is the ideal solution for laminar flow control and special ventilation applications. The E+E thin film sensor is operating on an innovative hot film anemometer principle. This guarantees excellent accuracy for air velocity down to almost 0.15m/s, which is not possible for conventional anemometers with commercial temperature sensors or NTC bead thermistors.

The E+E sensor is much more insensitive to pollution than all other anemometer principles. This increases reliability and reduces maintenance costs.

EE66 series are available with current or voltage output, the measuring range and the response time can be selected with jumpers by the user.

Low angular dependence enables easy, cost-effective installation.

An integrated LC display and a version with remote sensing probe are also available.

Typical Applications_

clean room control laminar flow control

Technical Data_

Meas	suring values			
	Working range ¹⁾	01m/s (0200ft/min)		
		01.5m/s (0300ft/min)		
		02m/s (0400ft/min)		
	Output ¹⁾	0 - 10 V	-1mA < I _L < 1 mA	
	01m/s / 01.5m/s / 02m/s	4 - 20 mA	$R_L < 450 \Omega$ (linear, 3 wires)	
	Accuracy at 20°C (68°F), 45% RH	0.151m/s (30200ft/min)	± (0.04m/s / 7.9ft/min + 2 % of m. v.)	
	and 1013 hPa	0.151.5m/s (30300ft/min)	± (0.05m/s / 9.8ft/min + 2 % of m. v.)	
		0.152m/s (30400ft/min)	<u>+ (0.06m/s / 11.8ft/min + 2 % of m. v.)</u>	
	Response time τ ₉₀ ^{1) 2)}	typ. 4 sec. or typ. 0.2 sec.	(at constant temperature)	
Gen	eral			
	Power supply	24V AC/DC ± 20 %		
	Current consumption for AC supply	max. 150 mA		
	for DC supply	max. 90 mA		
	Angular dependence	< 3 % of measurement at $\Delta \alpha$	< 10°	
	Cable gland	M16x1.5 cable Ø 4.5	- 10 mm (0.18 - 0.39")	
	Electrical connection	screw terminals max. 1.5 mm ² (AWG 16)	
	Electromagnetic compatibility	EN61326-1		CE
		EN61326-2-3		
	Housing / protecting class	Polycarbonate / IP65, Nema 4	with LC display: IP40	
	1) Selectable by jumper			

1) Selectable by jumper

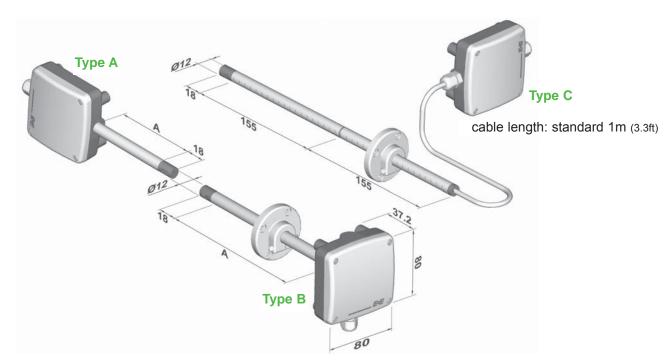
2) Response time τ_{90} is measured from the beginning of a step change of air velocity to the moment of reaching 90% of the step.

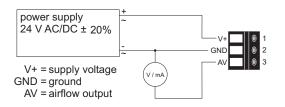
Features

easy installation

measurement down to 0m/s

low angular dependence




Temperature range	working temperature probe	-2550°C (-13122°F)
	working temperature electronic	-1050°C (14122°F)
	storage temperature	-3060°C (-22140°F)

Dimensions (mm)

1 mm = 0.03937" / 1" = 25.4 mm

Connection Diagram

Ordering Guide_____

MODEL		HOUSING		PROBE LENC (according to "A")	ЭTH	CABLE L (Type C only)	ENGTH	DISPLAY	
velocity	(V)	wall mounting	(A)	100mm (3.9")	(3)	1m (3.3ft)	(no code)	without display	(no code)
		duct mounting	(B)	200mm (7.9")	(5)	2m (6.6ft)	(K200)	with display	(D02)
		remote sensor probe	(C)	others	(x)	5m (16.4ft)	(K500)		
						10m (32.8ft)	(K1000)		
EE66-									

Order Example_____

EE66-VB5-D02

model: housing: probe length: display: velocity duct mounting 200mm (7.9") with LC display

EE66

EE65 Series

Air Velocity Transmitter for HVAC Applications

EE65 air velocity transmitters are ideal for accurate ventilation control applications. They are operating on an innovative hot film anemometer principle.

The E+E thin film sensor guarantees very good accuracy at low air velocity, which is not possible for conventional anemometers with commercial temperature sensors or NTC bead thermistors.

Moreover, the E+E sensor is much more insensitive to dust and dirt than all other anemometer principles. This means high reliability and low maintenance costs.

EE65 series are available with current or voltage output, the measuring range and the response time can be selected with jumpers by the user.

Low angular dependence enables easy, cost-effective installation.

An integrated LC display and a version with remote sensing probe are available.

Typical Applications

HVAC process and environmental control

Technical Data_

asuring values		
Working range ¹⁾	010m/s (02000ft/min)	
	015m/s (03000ft/min)	
	020m/s (04000ft/min)	
Output ¹⁾	0 - 10 V	-1 mA < I _L < 1 mA
010m/s / 015m/s / 020m/s	4 - 20 mA	R _L < 450 Ω
Accuracy at 20°C (68°F), 45 % RH	0.210m/s (402000ft/min)	± (0.2m/s / 40ft/min + 3 % of m. v.)
and 1013hPa	0.215m/s (403000ft/min)	± (0.2m/s / 40ft/min + 3 % of m. v.)
	0.220m/s (404000ft/min)	± (0.2m/s / 40ft/min+ 3 % of m. v.)
Response time $\tau_{90}^{(1)(2)}$	typ. 4 sec. or typ. 0.2 sec.	(at constant temperature)

General

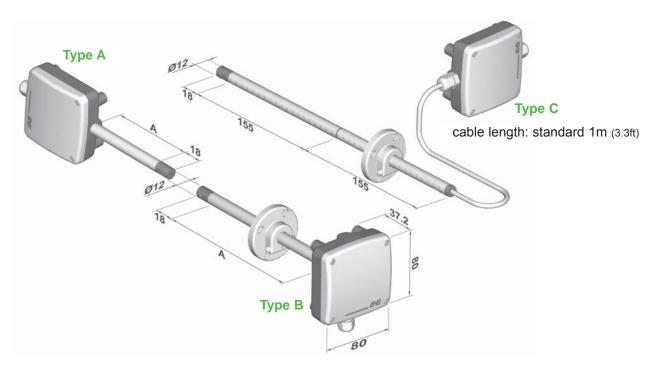
Power supply	24V AC/DC ± 20 %	
Current consumption for AC supply	max. 150 mA	
for DC supply	/ max. 90 mA	
Angular dependence	< 3 % of measurement at $ \Delta \alpha $ < 10°	
Cable gland	M16x1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39")	
Electrical connection	screw terminals max. 1.5 mm ² (AWG 16)	
Electromagnetic compatibility	EN61326-1	
	EN61326-2-3	
Housing/protecting class 1) Selectable by jumper	Polycarbonate / IP65, Nema 4 with LC display IP40	

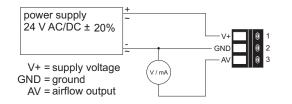
2) Response time τ_{90} is measured from the beginning of a step change of air velocity to the moment of reaching 90% of the step.

v2.3

Features

EE65


low angular dependence easy installation adjustable to application requirements


Temperature range	working temperature probe working temperature electronic storage temperature	-2550°C (-13122°F) -1050°C (14122°F) -3060°C (-22140°F)
	storage temperature	-5000 C (-22140 F)

Dimensions (mm)

1 mm = 0.03937" / 1" = 25.4 mm

Connection Diagram

Ordering Guide_____

MODEL		HOUSING		PROBE LENG (according to "A")	TH	CABLE L (Type C only)	ENGTH	DISPLAY	
velocity	(V)	wall mounting	(A)	100mm (3.9")	(3)	1m (3.3ft)	(no code)	without display	(no code)
		duct mounting	(B)	200mm (7.9")	(5)	2m (6.6ft)	(K200)	with display	(D02)
		remote sensor probe	(C)	others	(x)	5m (16.4ft)	(K500)		
						10m (32.8ft)	(K1000)		
EE65-									

Order Example _____

EE65-VB5-D02
model:
housing:
probe length:
display:

velocity duct mounting 200mm (7.9") with LC display

EE575 Series

HVAC Miniature Air Velocity Transmitter

The EE575 is a compact air velocity transmitter designed for high volume applications. Due to the small design, the module can be fitted to nearly every application.

The use of a high-quality E+E thin film sensor element based on the hot film anemometer principle ensures optimal precision and maximum sensitivity.

The innovative design makes E+E velocity sensor elements less sensitive to dust and other pollution than conventional hot wire anemometers. This is reflected in the excellent reproducibility and proven long-term stability of the measuring results.

The EE575 can be mounted fast and easily.

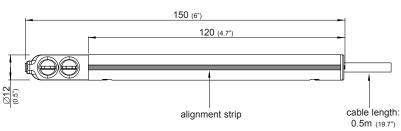
The alignment strip along the probe's tube and the matching mounting flange determine the orientation of the sensor probe. The mounting flange allows for an infinitely variation of the depth of the sensor probe. The electronics integrated in the probe tube provide a linear analogue signal of 0-5V or 0-10V for the velocity range 0...5m/s (0...1000ft/min) / 0...10m/s (0...200ft/min) or 0...20m/s (0...4000ft/min).

Typical Applications

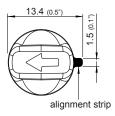
heating and ventilation systems fan control intake air measurement in furnaces excellent price/performance ratio compact housing easy and fast mounting customization possible

Features

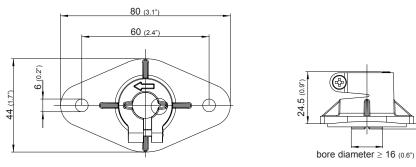
Technical Data


Magaz			
Measu	uring	va	ues

Working range ¹⁾	0 5m/s (01000ft/min)
	010m/s (02000ft/min)
	020m/s (04000ft/min)
Output signal ¹⁾	0-5V (max. 1mA)
05m/s / 010m/s / 020m/s	0-10V (max. 1mA)
Accuracy	0.5 5m/s (1001000ft/min): ±(0.2m/s / 40ft/min +3% of measuring value)
at 20°C / 68°F / 45%RH and 1013hPa	1 10m/s (2002000ft/min): ±(0.3m/s / 60ft/min +4% of measuring value)
	1 20m/s (2004000ft/min): ±(0.4m/s / 80ft/min +6% of measuring value)
Response time at 10m/s (2000ft/min) t ₉₀	typ. 4 sec.
eneral	
Supply voltage ¹⁾	10 - 19V DC or 19 - 29V DC
Current consumption	max. 70mA at 20m/s (4000ft/min)
Temperature ranges	working temperature: -2060°C (4140°F)
	storage temperature: -3060°C (-22140°F)
Connection	0.5m cable, PVC 3x0.25m ² with cable end sleeves
Electromagnetic compatibility	EN61326-1
	EN61326-2-3
Housing / Protection class	polycarbonate / IP20 (sensor); IP40 (housing)
1) refer to ordering guide	



Dimensions (mm)


Probe:

Front view sensor head:

Flange (included in the scope of supply):

Cable Assignment_

white	\rightarrow	V+
brown	\rightarrow	GND
green	\rightarrow	output signal

Ordering Guide_____

MODEL	OUTPUT	WORKING RANGE	SUPPLY	CABLE LENGTH
air velocity (V)	0 - 5V (2) 0 - 10V ¹) (3)	05m/s (01000ft/min) (A) 010m/s (02000ft/min) (B) 020m/s (04000ft/min) (C)	10 - 19V DC (1) 19 - 29V DC (2)	0.5m (1.6") (no code) 2m (6.5") (K200)
EE575-				

1) with supply 19-29V DC only

Order Example_

EE575-V2B1

Model:	air velocity
Output:	0 - 5V
Working range:	010m/s
Supply:	10 - 19V DC
Cable length:	0.5m

EE56 Series

Air Velocity Switch for low Velocity

EKTRONIK

Features

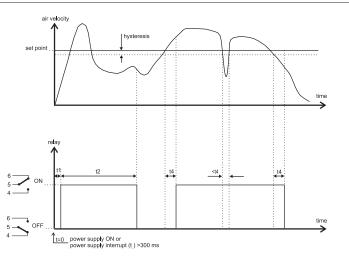
EE56 air velocity switch is designed for special laminar flow and HVAC applications with a switching threshold between 0.2 and 2m/s (39.5...400ft/min) It is based on the innovative E+E thin film sensor working on the hot film anemometer principle. This has an outstanding accuracy at very low air velocity, which is not possible for conventional anemometers with commercial temperature sensors or NTC bead thermistors. Moreover, the E+E sensor is much more insensitive to dust and dirt than all other anemometer principles. This means high reliability and low maintenance costs.

EE56 consists of an interchangeable sensing probe and a relay unit suitable for panel mounting. The electronics integrated in the sensing probe allow a cable length up

to 10m (32.8ft) to the relays unit and ensure high immunity to electromagnetic perturbations.

Low angular dependence and an extension tube allows cost-effective, easy positioning of the sensing probe in ducts with diameter between 50 and 630mm (1.9 and 24.8"). For smooth plant start-up there is the possibility to set the delay time between 20 and 100 s.

Typical Applications


laminar flow control clean room control

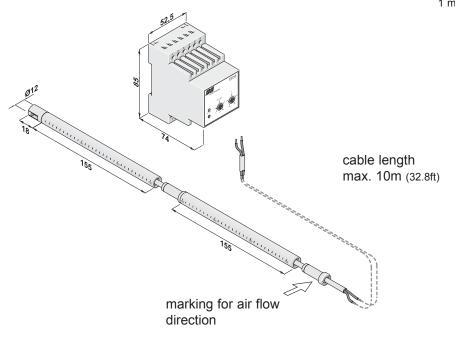
measurements down to "0" m/s compact case size interchangeable sensing probe easy setting of threshold and preset time remote sensing probe up to 10m (32.8ft) easy electric wiring easy installation

Working Principle ____

The sensing probe, which can be supplied with up to maximum 10m (32.8ft) cable, gives a signal to the relay module which is proportional to the air velocity. This value is compared to the threshold value set on the front panel of the air velocity switch. The relay is released if the threshold is reached or exceeded. To start without a hitch there are fixed and variable time steps integrated.

When switching on the EE56 or in case of short failure of the main supply > 300 ms (t_3) there is a delay of about 100 ms (t_1) till the relay is switched on. Independent of the true value the relays remain in this state for a delay time (t_2) (adjustable) between 20 and 100 s. Only after that the air velocity switch reacts to the TRUE and RATED VALUE. The reaction

time is limited by the response time (t_4) of the sensor probe which is about 2 s. The described function is related to continous operation, which is reached after a warm-up phase of approx. 3 min after applying the supply voltage.



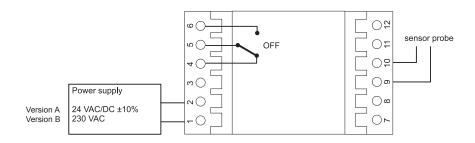
Technical Data_

Measuring values

0					
Working range threshold	0.22m/s (40400ft/min)				
Setting accuracy	typ. ± 6 % of end value				
Repeatability at 20°C	± 5 % of measuring value	± 5 % of measuring value			
Hysteresis					
Deviation by probe exchange	± 5 % of measuring value (max.)				
Temperature dependence	typ. 0.3 % /°C (typ. 0.17 % / °F)				
Switching output (relays 250 V)	10 A for ohmic load				
	3 A for inductive load				
eneral					
Supply voltage					
Туре А	24 VAC/DC ± 10 %				
Туре В	230V AC				
Current consumption					
Туре А	max. 85 mA DC max. ~150 mA _{eff}				
Туре В	max. 20 mA _{eff}				
Switching delay time (t ₂)	adjustable 20 to 100 s				
Response time (t ₄)	approx. 2 s				
Probe cable length	2.5m or 10m (8.2 or 32.8ft)				
Electrical connection	screw terminals up to 1.5 mm ² (AWG 16)				
Protection class					
sensor probe	Polycarbonate / IP20				
housing	Polycarbonate / IP30				
Electromagnetic compatibility	EN61326-1	CE			
	EN61326-2-3				
Temperature range					
sensor probe	-3080°C (-22176°F)				
housing	-2060°C (-4140°F)				
storage	-3060°C (-22176°F)				

Dimensions (mm)

1 mm = 0.03937" / 1"= 25.4 mm



Depth of immersion

To adjust the probe length to the air duct dimensions the sensor probe consists of two parts (sensor head and extension tube). The extension tube should be used for duct diameters > 310 mm (12.2").

Connection Diagram

Ordering Guide

MODEL		POWER SUPPLY		PROBE CABLE L	ENGTH
air velocity switch	(V)	24V DC/AC 230V AC	(A) (B)	2.5m (8.2ft) 10m (32.8ft)	(25) (100)
EE56-					

Order Example_

EE56-VA25

model: power supply: probe cable length:

air velocity switch 24V DC/AC 2.5 m (8.2ft)

EE55 Series

Air Velocity Switch for HVAC Applications

The EE55 air velocity switch is designed for standard HVAC applications with a switching threshold between 2 and 20 m/s (400...4000ft/min). It is based on the innovative E+E thin film sensor working on the hot film anemometer principle. This element is distinguished by its outstanding accuracy over the whole working range and its approved long term stability.

Moreover, the E+E sensor is much more insensitive to dust and dirt than other anemometer principles. This means high reliability and low maintenance costs.

EE55 consists of an interchangeable sensing probe and a relay unit suitable for panel mounting. The electronics integrated in the sensing probe allow a cable

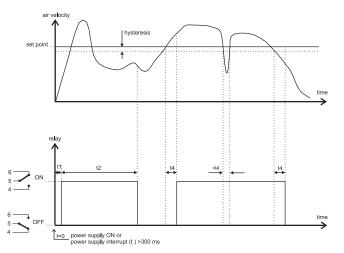
length up to 10m (32.8ft) to the relays unit and ensure high immunity to electromagnetic perturbations.

Low angular dependence and an extension tube allows cost-effective, easy positioning of the sensing probe in ducts with diameter between 50 and 630mm (1.9 and 24.8"). For smooth plant start-up there is the possibility to set the delay time between 20 and 100 s.

Typical Applications _

Features

v2.2

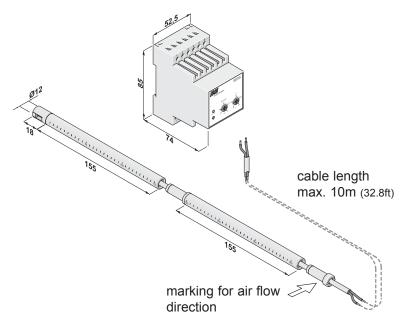

HVAC control environmental control

compact case size interchangeable sensing probe easy setting of threshold and preset time remote sensing probe up to 10m (32.8ft) easy electric wiring easy installation

Working Principle_

The sensing probe, which can be supplied with up to maximum 10m (32.8ft) cable, gives a signal to the relay module which is proportional to the air velocity. This value is compared to the threshold value set on the front panel of the air velocity switch. The relay is released if the threshold is reached or exceeded. To start without a hitch there are fixed and variable time steps integrated.

When switching on the EE55 or in case of short failure of the main supply > 300 ms (t_3) there is a delay of about 100 ms (t_1) till the relay is switched on. Independent of the true value the relays remain in this state for a delay time (t_2) (adjustable) between 20 and 100 s. Only after that the air velocity switch reacts to

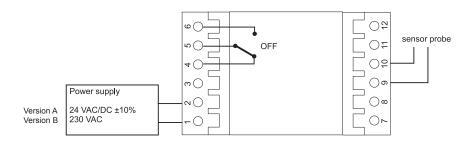

the TRUE and RATED VALUE. The reaction time is limited by the response time (t_4) of the sensor probe which is about 2 s. The described function is related to continous operation, which is reached after a warm-up phase of approx. 3 min after applying the supply voltage.

Technical Data_____

Measuring values				
Working range threshold	220m/s (4004000ft/min)			
Setting accuracy	typ. ± 6 % of end value			
Repeatability at 20°C (68°F)	± 5 % of measuring value			
Hysteresis	3% of measuring value, min. 0.05m/s (10ft/min)			
Deviation by probe exchange	± 5 % of measuring value (max.)			
Temperature dependence	typ. 0.3 % /°C (typ. 0.17 % / °F)			
Switching output (relays 250 V)	10 A for ohmic load			
	3 A for inductive load			
General				
Supply voltage				
Туре А	24V AC/DC ± 10 %			
Туре В	230V AC			
Current consumption				
Туре А	max. 85 mA DC max. ~150 mA _{eff}			
Туре В	max. 20 mA _{eff}			
Switching delay time (t ₂)	adjustable 20 to 100 s			
Response time (t ₄)	approx. 2 s			
Probe cable length				
Electrical connection	screw terminals up to 1.5 mm ² (AWG 16)			
Protection class				
sensor probe	Polycarbonate / IP20			
housing	Polycarbonate / IP30			
Electromagnetic compatibility	EN61326-1	CE		
	EN61326-2-3			
Temperature range				
sensor probe	-3080°C (-22176°F)			
housing	-2060°C (-4140°F)			
storage	-3060°C (-22140°F)			

Dimensions (mm)_

1 mm = 0.03937" / 1" = 25.4 mm



Depth of immersion

To adjust the probe length to the air duct dimensions the sensor probe consists of two parts (sensor head and extension tube). The extension tube should be used for duct diameters > 310 mm (12.2").

without extension tube:	MAX 155 mm (6.1")
with extension tube:	AXX 315 mm (12.4")

Connection Diagram

Ordering Guide

MODEL		POWER SUPPLY		PROBE CABLE LENGTH	
air velocity switch	(V)	24V DC/AC 230V AC	(A) (B)	2.5m (8.2ft) 10m (32.8ft)	(25) (100)
EE55-					

Order Example_

EE55-VB100

model: power supply: probe cable length: velocity switch 230V AC 10m (32.8ft)

EE85 Series

Duct mounted CO_2 transmitters and switches of the EE85 series are designed for HVAC applications. The CO_2 sensing element uses the Non-Dispersive Infrared Technology (NDIR). A patented auto-calibration procedure compensates for drift caused by the aging of the sensing element and guarantees outstanding long term stability.

Installed into a duct a small flow of air will be established by convection through the probe into the transmitter housing and back into the duct. Inside the transmitter housing the air will diffuse through a membrane into the CO_2 sensing element.

The operation in closed loop air stream avoids pollution of the CO_2 sensor.

Measuring ranges of 0...2000/5000/10000ppm correspond to an analogue interface of 0 - 5/10V or 4 - 20mA. Selectively a switching

output with adjustable switching point and hysteresis is available. The instruments can be easily positioned in the duct with the standard mounting flange.

Typical Applications

Technical Data _ Measuring Values

building management for residental and office areas ventilation control

CO₂ Transmitter and Switches for Duct Mounting

very simple installation compact housing auto-calibration measuring ranges: 0...10000ppm analogue or switching output

Features

CO_2 Measurement principle Non-Dispersive Infrared Technology (NDIR) Sensing element E+E Dual Source Infrared System 0...2000 / 5000 / 10000ppm Measuring range $< \pm$ (50ppm +2% of measuring value) Accuracy at 25°C (77°F) 0...2000ppm: and 1013mbar 0...5000ppm: < ± (50ppm +3% of measuring value) 0...10000ppm: < ± (100ppm +5% of measuring value) Response time τ_{63} < 195s Temperature dependence typ. 2ppm CO₂/°C Long term stability typ. 20ppm / year Sample rate approx. 15s Outputs **Analogue Output** 0...2000 / 5000 / 10000ppm 0 - 5V -1mA < I_L < 1mA 0 - 10V $-1mA < I_{L} < 1mA$ 4 - 20mA R_I < 500 Ohm **Switching Output** Max. switching voltage 50V AC / 60V DC Max. switching load 1A at 50V AC 1A at 24V DC Min. switching load 1mA at 5V DC Contact material Ag+Au clad General Supply voltage 24V AC ±20% 15 - 35V DC Current consumption typ. 10mA + output current max. 0.5A for 0.3s Warm up time²⁾ < 5 min Housing / protection class PC / housing: IP65, probe: IP20 Cable gland M16 x 1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39") screw terminals max. 1.5 mm² (AWG 16) Electrical connection Electromagnetic compatibility FCC Part 15 FN61326-1 EN61326-2-3 ICES-003 ClassB Working temperature and conditions -20...60°C (-4...140°F) 0...95% RH (not condensating) Storage temperature and conditions -20...60°C (-4...140°F) 0...95% RH (not condensating) 1) minimum flow speed 1m/s (200ft/min) 2) warm up time for performance according to specification

Dimensions (mm)_

A...according to ordering guide

Ø12 ⁽⁰⁾

Seal

37.2 (1.46")

80 (3.15"

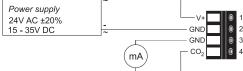
V GND

GND

CO,

80 (3.15")

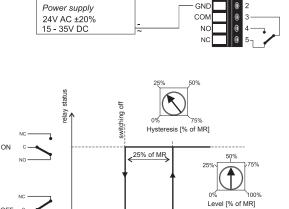
Connection Diagram_


Analogue Output

EE85-xC2/3x

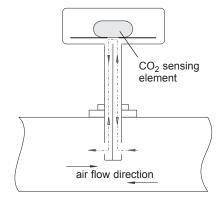
Power supply

24V AC ±20% 15 - 35V DC


EE85-xC6x

V

Switching Output


OFF C-

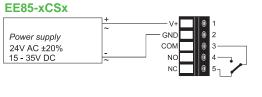
500

Ordering Guide_

MEASURING R	ANGE	MODI	EL	OUTPUT		PROBE LE (see dimensions	
02000ppm 05000ppm 010000ppm	(2) (5) (10)	CO ₂	(C)	0 - 5V 0 - 10V 4 - 20mA switching outpu	(2) (3) (6) tt (S)	50mm 200mm	(2) (5)
EE85-							

Operation Principle

0...5000ppm


measuring range:	05000ppm
model:	CO_2
output:	0 - 10V
probe length:	200mm

Order Example

2000

ppm

switching

1000

EE80 Series

HVAC Room Transmitter and Switches for CO₂, Relative Humidity and Temperature

EE80 series set new standards in CO_2 measurements for HVAC. The transmitters resp. switches combine CO_2 , relative humidity (RH) and temperature (T) measurement in one modern and user-friendly housing.

The basic EE80 version for CO_2 and T can be easily extended with a RH plug-in module.

The CO_2 measurement is based on the infrared principle. A patented auto-calibration procedure compensates for the aging of the infrared source and ensures outstanding long term stability.

EE80 provides analogue outputs (in V or mA). The optional display indicates sequentially the actual measuring data.

As one more option a switching output with adjustable switching point and hysteresis is available.

A wide variety of models ensures an optimal adjustment for customised requirements.

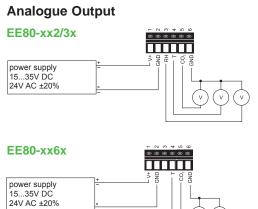
Typical Applications

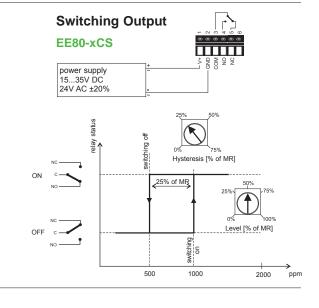
building management for residential and office areas ventilation control

_Features

CO₂ / RH / T measurement in one device RH output with plug-in module analogue or switching output modern design optional display easiest installation long-term stable

Technical Data_


Measuring values CO_2 Measurement principle Non-Dispersive Infrared Technology (NDIR) E+E Dual Source Infrared System Sensor 0...2000 / 5000ppm Working range Accuracy at 25°C (77°F) $< \pm$ (50ppm +2% of measuring value) 0...2000ppm: and 1013mbar 0...5000ppm: $< \pm$ (50ppm +3% of measuring value) Response time t₆₃ < 195s Temperature dependence typ. 2ppm CO₂/°C Long term stability typ. 20ppm / year Sample rate approx. 15s Temperature Accuracy at 20°C (68°F) ±0.3°C (±0.54°F) version with current output 4 - 20mA: ±0.7°C (±1.26°F) **Relative Humidity** Measurement principle capacitive Sensor element HC103 Working range¹ 10...90% RH Accuracy at 20°C (68°F) <u>±3% RH (30...70% RH)</u> ±5% (10...90% RH) Outputs Analogue Output 0...2000 / 5000ppm / 0 - 5V $-1mA < I_1 < 1mA$ 0...100% RH / 0...50°C (32...122°F) 0 - 10V $-1mA < I_1 < 1mA$ R_L < 500 Ohm 4 - 20mA Switching Output 50V AC / 60V DC Max. switching voltage Max. switching load 1A at 50V AC 1A at 30V DC Min. switching load 1mA at 5V DC Contact material Ag+Au clad General Supply voltage 24V AC ±20% 15 - 35V DC typ. 10mA + output current Current consumption max. 0.5A for 0.3s Warm up time²⁾ < 5 min



Display	LC display: alter	nating CO ₂ (ppm) / T (°C or °F) / RH (%	RH)
Electrical connection	screw terminals	max. 1.5 mm ² (AWG16)	
Electromagnetic compatibility	EN61326-1	FCC Part 15	(6
	EN61326-2-3	ICES-003 ClassB	
Working temperature range	090% RH (non	condensing) / -2060°C (-4140°F)	
Storage temperature range	090% RH (non	condensing) / -2060°C (-4140°F)	
1) refer to the working range of the humidity sensor H	IC1031		

refer to the working range of the humidity sensor HC103!
 warm up time for performance according specification

Connection Diagram

Cover: RAL 9003 (signal white) Back: RAL 7035 (light grey)

Housing Dimensions (mm)

W x H x D = 85 x 100 x 26mm (3.3 x 3.9 x 1")

Ordering Guide_

EE80 voltage / current output:

 voltage / vallent	output.				
WORKING RANGE	MODEL	OUTPUT	DISPLAY	T-UNIT	T-SCALE
02000ppm (2) 05000ppm (5)	$\begin{array}{c} \text{CO}_2 + \text{T} & (\text{CT}) \\ \text{CO}_2 + \text{T} + \text{RH} & (\text{CTF}) \end{array}$	0-5V (2) 0-10V (3) 4-20mA ¹⁾ (6)	without display () with display (D04)	°C () °F (E01)	050 (T04) -555 (T31) 040 (T55) other (Txx)
EE80-					
1) current output (6) not avai	lable for model CTF				

Material of housing: Protection class:

Colour of housing:

PC IP30

EE80 switching output:

 	-				
WORKING RANGE	MODEL	OUTPUT	DISPLAY		Order Example
					EE80-2CT3D04-T04
02000ppm (2) 05000ppm (5)	CO ₂ (C)	switching output (S)	without display with display	() (D04)	Version with voltage output:Working range: 02000 ppmModel: $CO_2 + T$ Output: $0-10V$
EE80-					Display: with display T-Unit: °C T-Scale: 050°C (32122°F)

Accessories

- humidity plug-in module (HA011003)

EE80

EE82 Series

Measuring instruments in green houses or life stock barns are exposed to a very demanding environment: high humidity levels, pollutants like fertilizers, herbicides and high ammonia concentrations are just a few of the many hazards.

The robust, functional housing of the EE82 with integrated special filter has been designed for such applications.

The air diffuses through the filter into the instrument enclosure. Then the air diffuses further through a second membrane filter integrated in the CO_2 measuring cell.

The CO_2 measurement is based on the non-dispersive infrared (NDIR) technology. The patented auto-calibration procedure compensates for aging of the infrared source and guarantees high reliability, long term stability and eliminates the need of periodical recalibration in the field.

CO₂ Transmitters and Switches for Agriculture Applications

Features

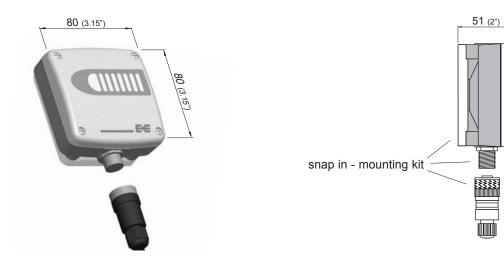
v1.4

Measuring ranges of 0...2000/5000/10000ppm correspond to an analogue interface of 0 - 5/10V or 4 - 20mA. Selectively a switching output with adjustable switching point and hysteresis is available.

The very practical snap-in mounting flange and connector for the supply voltage and outputs allow quick and easy installation of the EE82 without ever opening the housing.

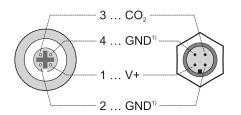
Typical Applications _

easy installation green houses fruit and vegetable storage compact housing auto-calibration life stock barns measuring range 0...10000ppm analogue or switching output Technical Data Measuring Values Non-Dispersive Infrared Technology (NDIR) Measuring principle E+E Dual Source Infrared System Sensing element 0...2000 / 5000 / 10000ppm Measuring range $< \pm$ (50ppm +2% of measuring value) Accuracy at 25°C (77°F) 0...2000ppm: $< \pm$ (50ppm +3% of measuring value) and 1013mbar 0...5000ppm: 0...10000ppm: $< \pm$ (100ppm +5% of measuring value) Response time τ_{63} < 195s Temperature dependence typ. 2ppm CO₂/°C typ. 20ppm / year Long term stability Sample rate approx. 15s Output Analogue Output 0...2000 / 5000 / 10000ppm 0 - 5 / 0 - 10V $-1mA < I_1 < 1mA$ 4 - 20mA R_I < 500 Ohm Switching Output 50V AC / 60V DC Max. switching voltage Max. switching load 1A at 50V AC 1A at 30V DC Min. switching load 1mA at 5V DC Contact material Ag+Au clad General 24V AC ±20% 15 - 35V DC Supply voltage Current consumption typ. 10mA + output current max. 0.5A for 0.3s Warm up time¹⁾ < 5 min Housing / protection class PC / IP54 Electrical connection M12 plug Electromagnetic compatibility EN61326-1 FCC Part 15 ICES-003 ClassB EN61326-2-3


 Working temperature and conditions
 -20...60°C (-4...140°F)
 0...100% RH

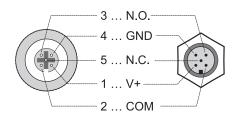
 Storage temperature and conditions
 -20...60°C (-4...140°F)
 0...95% RH (not condensating)

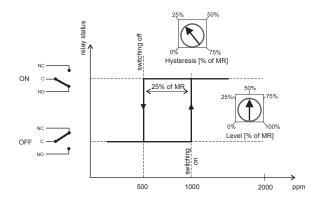
 1) warm up time for performance according specification
 -0...60°C (-4...140°F)
 0...95% RH (not condensating)


Dimensions (mm)_

Connection Diagram

Analogue Output


EE82-xC2/3/6



1) GND internally conected

Switching Output

EE82-xCS

____Order Example

EE82

MEASURING	RANGE	MODEL		OUTPUT	
02000ppm 05000ppm 010000ppm	(2) (5) (10)	CO ₂	(C)	0 - 5V 0 - 10V 4 - 20mA switching outpu	(2) (3) (6) ut (S)
EE82-					

Ordering Guide _____

EE89 Series

Miniature CO₂ Module for OEM / HVAC Applications

alterations according to customer specifications possible

The EE89 series CO_2 miniature module is designed especially for mass production and OEM applications.

The measuring principle is based on infrared technology (NDIR).

The EE89 series is maintenance free because of the patented E+E auto-calibration feature, compensating for the effects of aging and therefore warrants outstanding long term stability.

The output of the digital interface allows easy signal processing.

Contact pads at the edge or contact pins provide multiple ways of mounting the board.

With the EE89 testboard it is possible to display and save the measured values of the EE89 on the PC. An E2-RS232 adapter, a power supply unit and the EE89 evaluation software are included in the scope of supply.

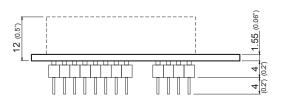
Typical Applications

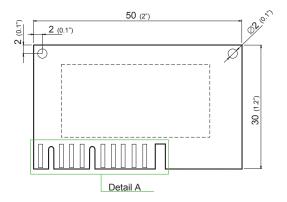
OEM building management demand HVAC installations maintenance free autocalibration highest accuracy excellent long term stability small dimensions digital interface

Features

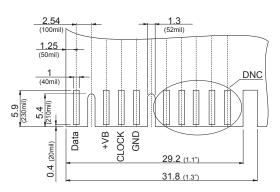
Technical Data

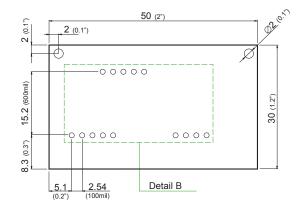
Measurement principle	Non-Dispersive Infrared Technology (NDIR)	
Sensor	E+E Dual Source Infrared System	
Working range	02000 / 5000 / 10000ppm	
Accuracy at 25°C (77°F) and	02000 ppm: $< \pm (50$ ppm +2% of measuring value)	
1013mbar	05000 ppm: $< \pm (50$ ppm +3% of measuring value)	
To Tornbar	010000ppm: < ± (100ppm +5% of measuring value))
Response time t ₆₃	< 195s)
Temperature dependence	typ. 2ppm CO ₂ /°C (050°C / 32122°F)	
Long term stability	typ. 20ppm / year	
Sampling rate	approx. 15s	
utput		
02000 / 5000 / 10000ppm	digital E2 interface (details: www.epluse.com)	
eneral	•	
Supply voltage	4.75 - 7.5V DC	
Current consumption	typ. 7mA	
·	max. 0.5A for 0.3s	
Warm up time ¹⁾	< 5 min	
Electrical connection	contact pads or contact pins, grid 2.54mm (100mil)	
Working conditions	-2060°C (-4140°F) 595% RH (not condensating)	85110kPa
Storage conditions	-2060°C (-4140°F) 595% RH (not condensating)	70110kPa
Dimensions	50 x 30mm (2 x 1.2")	
Weight	approx. 15g (0.5oz)	

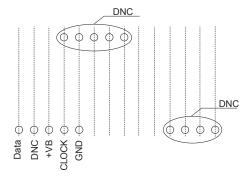



Connection Diagram / Dimensions (mm)_

Mounting X (Contact Pads)


Mounting Y (Contact Pins)


designed for 28 pin socket or PCB soldering



Detail A / Connection Diagram:

Detail B / Connection Diagram:

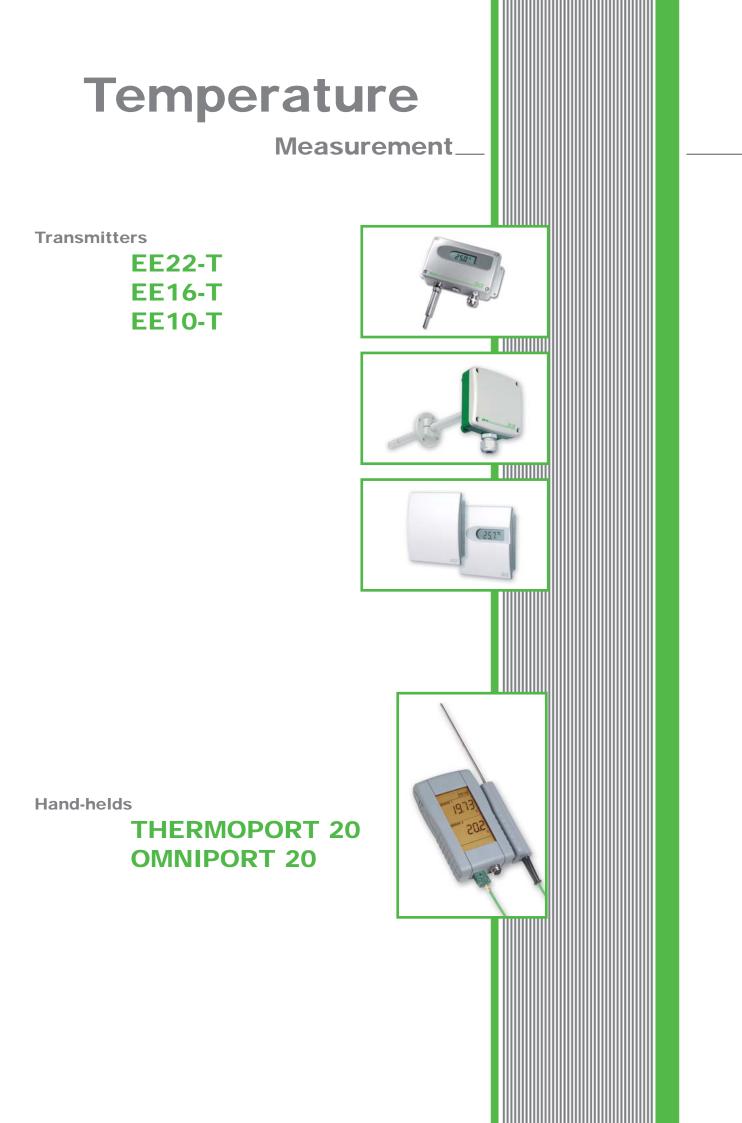
DNC...do not connect

Ordering Guide

MEASURING RA	ANGE	TYPE		OUTPUT		MOUNTING	
02000ppm 05000ppm 010000ppm	(2) (5) (10)	CO ₂	(C)	digital interface	(9)	contact pads contact pins	(X) (Y)
EE89-							

Order Example_

EE89-2C9Y


measuring range:0...2000ppmtype:CO2output:digital interfacemounting:contact pins

EE89 testboard

(HA011010)

Accessories

EE89

EE22-T Series

Temperature Transmitter with interchangeable probes

Unique for the EE22-T series are the interchangeable sensing probes with connector.

The calibration data is stored in the probes, which are therefore interchangeable and probe replacement does not affect the performance of EE22-T.

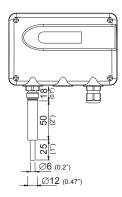
The outstanding accuracy over the entire temperature range is based on very precise calibration methods and on the latest microprocessor technology. Well-proven E+E humidity sensor elements ensure excellent long-term stability.

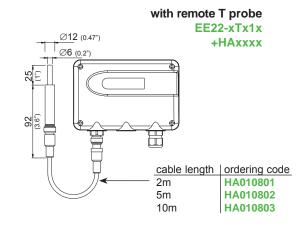
For high temperature applications (up to $+80^{\circ}C / +176^{\circ}F$) or in case of limited space availability, the sensing probes can be connected to EE22-T housing with cables (2m, 5m or 10m / 6.6ft, 16.4ft or 32.8ft) without any repercussions for the overall accuracy of the instrument.

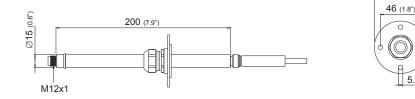
Voltage 0 - 1 / 10V or current 4 - 20mA (2 wire) outputs are available, of which the temperature output can be scaled according to the application (see ordering guide).

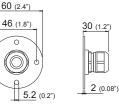
EE22-T is suitable for direct wall mounting and for installation on rails according to DIN EN 50022.

For easy duct mounting a duct mounting kit is available as an option.


An optional display indicates the actual T values.




Probe Dimensions (mm)



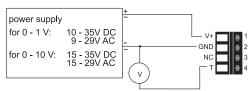
duct mounting kit:

113

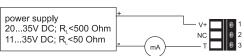
Typical Applications

pharmaceutical industry clean rooms storage rooms green houses cooling chambers

accuracy ±0,1°C at 20°C interchangeable probes remote sensing probe up to 10m (32.8ft) measuring range -40...80°C (-40...176°F) optional display traceable calibration cost saving, easy loop-calibration of T probes

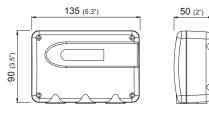

Features

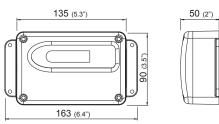
Technical Data_


Temperature Sensor element	Pt1000 (tolerance class A, DIN EN 60751)
Working range sensing probe	fixed sensing probe: -4060°C (-40140°F)
	remote sensing probe: -4080°C (-40176°F)
Accuracy (±0.1°C at 20°C)	$\begin{array}{c} \Delta^{\circ} C \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0 \\ -0.1 \\ -0.2 \\ -0.3 \\ -0.2 \\ $
Temperature dependence of electronics Response time	$typ. \pm 0.007^{\circ}C/^{\circ}C$ $t_{63}: typ. < 6min$
Outputs	03 71
xxyy°C ¹⁾	0 - 1V -0.5mA < I _L < 0.5mA
(temperature output scale according to Txx ordering code)	0 - 10V -1mA < IL < 1mA 4 - 20mA (two wire) RL < 500 Ohm
Temperature dependence of analogue outputs	max. 0.2 ^{mV_} _cresp. 1 ^{µA} 0.6mV
Resolution voltage output	
current output	4.3µA
General	
Supply voltage for 0 - 1V output for 0 - 10V output for 4 - 20mA output	10 - 35V DC or 9 - 29V AC 15 - 35V DC or 15 - 29V AC 10 - 35V DC
Load resistor for 4 - 20mA output	$R_{L} \leq \underbrace{U_{v} - 10v}_{0.02 A} \left[\Omega\right]$
Current consumption	typ. 10mA for DC supply typ. 20mA _{eff} for AC supply
Electrical connection	screw terminals max. 2.5mm ²
Cable gland	M16x1.5 or connector (type: Lumberg, RSF 50/11)
Material	housing: PC or Al Si 9 Cu 3 probe: stainless steel 1.4571 (316Ti)
Protection class of housing	IP65; Nema 4
Electromagnetic compatibility	EN61326-1 EN61326-2-3 ICES-003 ClassB FCC Part15 ClassB
Working temperature range of probe	-4060°C (-40140°F) / 80°C (176°F) for remote sensing probe
Working temperature range of electronics	-4060°C (-40140°F)
Storage temperature range 1) Refer to ordering guide	-4060°C (-40140°F)

Connection Diagram

EE22-T1,3xx


EE22-T6xx



Housing Dimensions (mm)

polycarbonate housing

metal housing

For use in harsh industrial environments all models of EE22-T series are available in a robust metal housing. The smooth surface and the rounded outlines allow for the use in clean room applications.

Ordering Guide_

n 1 - Transmitter				EE22-
Hardware Configura	tion			
Housing	metal housing			м
	polycarbonate hou	sing		Р
Туре	temperature			Т
Output	0-1V			1
	0-10V			3
	4-20mA			6
Model	wall mounting - cal	ole gland M16x1.5 cat	ole Ø 4.5 - 10 mm (0.18 - 0.39")	A
	wall mounting - rea	ar cable outlet		F
Probe	1 probe T			1
Display	without display			
	with display			D07
Plug	without plug			
0	1 plug for power su	upply and outputs		C03
Software Configurat		, , , , , , , , , , , , , , , , , , ,		
T-Unit	°C			
	°F			E01
Scaling of T-output	-4060 (T02)	0120 (T16)	-2050 (T48)	Select according to
in°C or °F	-1050 (T03)	-3060 (T20)	-40176 (T80)	Ordering Guide
	050 (T04)	080 (T21)	0140 (T85)	(Txx)
	060 (T07)	-4080 (T22)	0176 (T86)	
	-3070 (T08)	-2080 (T24)	32120 (T90)	Other T-scaling refer
	-1070 (T11)	-2060 (T25)	32140 (T91)	page 146
	-40120 (T12)	-3050 (T45)	32132 (T96)	
n 2 - Probe cable				
Cable length	2m (6.6ft)			HA010801
-	5m (16.4ft)			HA010802
	10m (32.8ft)			HA010803

Accessories / Replacement Parts.

(For further information see data sheet "Accessories", page 138)

(V02)

(EE07-MT)

- probe cable 2m (6.6ft) / 5m (16.4ft) / 10m (32.8ft) (HA0108xx) (HA010203)
- bracket for rail installation
- external supply unit
- Replacement probe T in metal

- Display + housing cover in polycarbonate (D07P) - Display + housing cover in metal (D07M) - Reference probes (HA010403) - Duct mounting kit (HA010209)

Order Example_

Position 1 - Transmitter:

EE22-MT3A1C03/T07

EEZZ-IVI 1 3A 1 603/10/	
housing:	metal housing
type:	temperature
output:	0-10V
model:	wall mounting - cable gland M16x1.5
probe:	1probe T
display:	without display
plug:	1 plug for power supply and outputs
T-Unit:	°C
scaling of T-output:	060°C

Position 2 - Probe cable:

HA010802 cable length: 5m (16.4ft)

EE16-T Series

EE16 temperature transmitters are the ideal solution for accurate measurement of temperature in the range $0...50^{\circ}$ C ($32...122^{\circ}$ F) in HVAC applications.

EE16 temperature transmitters are available as wall or duct mounted with current or voltage output signals.

Temperature Transmitters for HVAC Applications

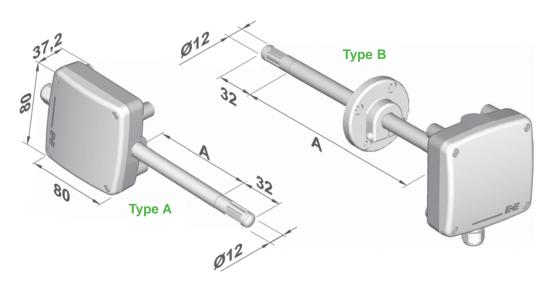
excellent price/performance ratio

Typical Applications_

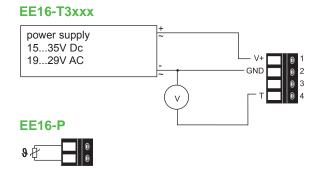
Features

building-automation storage rooms climate and ventilation control

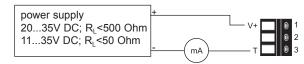
Technical Data_


ensor	Pt1000 (class A, DIN EN 60751)
Output appropriate 050°C (32122°F)	0-10 V $-1 \text{ mA} < I_{L} < 1 \text{ mA}$
	4-20 mA (two wire) R _L < 500 Ohm
Accuracy at 20°C (68°F) ¹⁾	±0.3°C (±0.5°F)
Temperature (passive output)	
Type of T-Sensor	please see ordering guide
ral	
Supply voltage	
for 0 - 10 V	15 - 35V DC or 24V AC ±20%
for 4 - 20 mA	10V + R _L x 20 mA < U _v < 35V DC
Current consumption	for DC supply typ. 8 mA
-	for AC supply typ. 20 mA _{eff}
Electrical connection	screw terminals max. 1.5 mm ² (AWG 16)
Housing / protection class	Polycarbonate / IP65, Nema 4
Cable gland	M16x1.5 cable Ø 4.5 - 10 mm (0.18 - 0.39")
Sensor protection	membrane filter or plastic grid
Electromagnetic compatibility	EN61326-1
	EN61326-2-3
Temperature range	working temperature: -550°C (23122°F)
-	storage temperature: -2560°C (-13140°F)

1) Please note: temperature accuracy EE16-T6x2x: ±0.5°C (±0.9°F)



Dimensions (mm)_


1 mm = 0.03937" / 1" = 25.4 mm

Connection Diagram

EE16-T6xxx

Ordering Guide

MODEL	OUTPUT		HOUSING		PROBE LENGTH (according to "A")		FILTER	
temperature active (T)	0-10 V 4-20 mA	(3) (6)	wall mounting duct mounting	(A) (B)	50mm (1.9") 200mm (7.9")	(2) (5)	membrane filter plastic grid	(1) (4)
EE16-								
MODEL	T-SENSOR		HOUSING		PROBE LENGTH (according to "A")		FILTER	
temperature passive (P)	Pt 100 DIN A Pt 100 DIN B Pt 1000 DIN A Pt 1000 DIN B others on request	(A) (B) (C) (D)	wall mounting duct mounting	(A) (B)	50mm (1.9") 200mm (7.9")	(2) (5)	membrane filter plastic grid	(1) (4)
EE16-								

Ordering Example_

EE16-T3A21	
model:	temperature transmitter
output:	0-10 V
housing:	wall mounting
probe length:	50mm (1.9")
filter:	membrane filter

EE10-T Series

EE10 room transmitters are the ideal solution for indoor applications such as HVAC in residential and official buildings.

The very stylish, functional housing makes possible easy installation and fast exchange of the sensing unit for service purposes.

The temperature output signal can be active or passive.

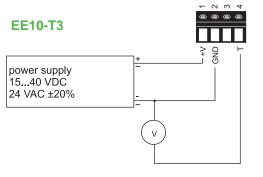
For on site display of the measured values the EE10 with active temperature output can be equipped with an easily readable display.

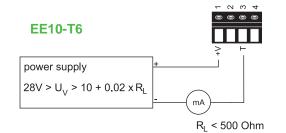
HVAC Temperature Transmitter for Indoor Applications

Typical Applications ____

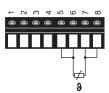
building management for residential and office areas switching cabinets climate control in hotels and museums excellent price / performance ratio easiest installation modern design optional display

Features

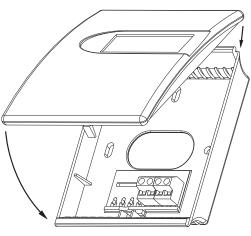

Technical Data_


Analogue output 050°C (32122°F) ¹⁾	0-10 V -1 mA < I _L < 1mA	
	4-20 mA (two wires) $R_{L} < (U_{v}-10)/0.02 < 500 \text{ Ohm}$	
Accuracy at 20°C (68°F)	±0.3°C (±0.54°F)	
Temperature (passive output)		
Type of T-Sensor	please see ordering guide	
neral Data		
Voltage supply (U _v)		
for 0 - 10 V	15 - 40 VDC or 24 VAC ±20%	
for 4 - 20 mA	28V DC > U _v > 10 + 0.02 x R _L (R _L < 500 Ohm)	
Current consumption		
for DC supply:	typical 4 mA	
for AC supply:	typical 15 mA _{eff}	
Electrical connection	Screw terminals max. 1.5 mm ² (AWG 16)	
Housing / Protection class	PC / IP30	
Display	only for EE10-Tx version: temperature	
CE compatibility according	EN61326-1 FCC Part15 ClassB	
	EN61326-2-3 ICES-003 ClassB	
Temperature ranges	Working temperature range: -555°C (23131°F)	
	Working temperature with display: -555°C (23121°F)	
	Storage temperature range: -2560°C (-13140°F)	

1) Other T-scalins refer to page 11



Connection Diagram_



EE10-P

Dimensions

W x H x D = 85 x 100 x 26 mm (3.3 x 3.9 x 1 inch)

Housing:PCProtection class:IP30Housing colour:cover:RAL 9003 (signal white)
back:RAL 7035 (light grey)

Ordering Guide_

Order Example

MODEL		OUTPUT		DISPLAY	T-Un	it	T-SC/	ALE .
temperature active	(T)	0-10V 4-20 mA	(3) (6)	without display () with display (D04)	°C °F	() (E01)	050 -555 040 other	(T04) (T31) (T55) (Txx)
EE10-								
MODEL		T-SENSOR						
temperature passive	(P)	Pt 100 DIN A Pt 100 DIN B Pt 1000 DIN A Pt 1000 DIN B	(A) (B) (C) (D)				del: put: play:	
EE10-						T-U T-so	nit: cale:	

Hand-Helds_

OMNIPORT 20 HUMIPORT 05/05IR/10/20 THERMOPORT 20

ELEKTRONIK

OMNIPORT 20

To measure various climate and processes values with a hand-held, user-friendly instrument requires extraordinary measurement technology. The hand-held meters of the OMNIPORT 20 series meet these multiple demands.

The selection of the appropriate sensing probe and accordingly the configuration of the hand-held meter allow for displaying the following values with the highest accuracy:

 relative humidity 	R⊦
- temperature	Т
- dew point temperature	Τd
- absolute humidity	dv
- mixing ratio	r
- air velocity	V
- water activity	aw
- water content in oil	Х

The robust housing of the OMNIPORT 20 allows usage in harsh industrial environments. The readability of the large illuminated display is excellent. The easy to understand menu and the practical thumbwheel navigation offer outstanding comfort.

Optional carrying cases can accommodate the basic device with up to 5 sensing probes as well as accessories (calibration device with 5 ampoules calibration fluid (80% RH), factory certificate).

The accuracies of the humidity / temperature probes are traceable to international standards, administrated by NIST, PTB, BEV...

Typical Applications

HVAC control industry and process control clean room control water activity and moisture content in oil humidity measurement in walls and floors

Technical Data

v1.7

Resolution	- humidity / temperature probe (HA040201, HA040202, HA040203):					
	humidity measurement: 0.1% RH; g/m ³ ; Td [°C, °F]; g/Kg; gr/lb					
	temperature measurement: 0.1°C; 0.1°F					
	- passive temperature probe (HA040101, HA040102, HA040104, HA040105): 0.1°C; 0.1°F					
	- air velocity probe (HA040401, HA040402, HA040403):					
	air velocity measurement: 0.01m/s; 1ft/min					
	temperature measurement: 0.01°C; 0.01°F					
	- moisture in oil measurement (HA040204, HA040206):					
	moisture measurement: aw: 0.001 [] or 0.011ppm (depending on measuring range)					
	temperature measurement: 0.1°C; 0.1°F					
Supply voltage	4x 1.5V AA alkali-manganese battery					
Battery lifetime	with PT100 probe: 300h					
	with RH/T or aw/x probe: 200h					
	with v probe: 40h					
Working temperature range	handheld and grip of sensing probe: 050°C (32122°F)					
CE compatibility according	EN50081-2 EN50082-2 EN55011					
	EN61000-4-2 EN61000-4-3					
Housing / protection class	ABS / IP40					
Dimensions (HxWxD)	145 x 85 x 37 mm (5.7 x 3.3 x 1.5")					
Weight	ca. 400g (1lbs)					
Display	LC display, 90 x 50 mm (3.5 x 2"), illuminated					

Multifunctional Hand-Held

OMNIPORT 20 SET

Features

measurands: RH, T, Td, dv, r, v, aw, x large, illuminated display HOLD / MIN / MAX / AVG readout real time clock SI/US units selectable recalibration by user

Humidity / Temperature Probes: RH/T HVAC probe

RH/T HVAC probe			
70 (2.8°) 32 (1.3°) C C C C C C C C C C C C C C C C C C C	Application: Working range: Accuracy: Response time τ_{90} Measurand: Order code:	humidity and temperature m applications 0100% RH / -2070°C (-4. ±2% RH (090% RH), ±3% ±0.2°C / ±0.36°F (20°C / 68°F), ±0.5°C / ±0.9°F (-20 resp. 70° ;≤ 7 sec. channel 1: T [°C/°F] channel 2: RH [%], dv [g/m³] HA040201	158°F) RH (90100% RH) C / -4 resp. 158°F)
RH/T high temperature probe			
	Application: Working range: Accuracy: Response time τ ₉₀ Measurand: Temperature dep Order code:	humidity and temperature m process applications 0100% RH / -40180°C ((grip of sensing probe up to 80°C) $\pm 2\%$ RH (090% RH), $\pm 3\%$ $\pm 0.2°C$ / $\pm 0.36°F$ ($20°C$ / $68°F$), $\pm 0.5°C$ / $\pm 0.9°F$ ($-40°C$ / $-40°F$), ± 30 sec. channel 1: T [°C/°F] channel 2: rF [%], dv [g/m³], pendence: RH: $\pm 0.03\%$ RH/°C HA040202	40356°F) RH (90100% RH) ±0.6°C / ±1.1°F (180°C / 356°F) Td [°C/°F], r [g/kg, gr/lb]
RH/T miniature probe			
250 (9.9°)	Application: Working range: Accuracy: Response time τ ₉₀ Measurand: Temperature dep Order code:	humidity and temperature me humidity measurement in bo 0100% RH / -40100°C (- ±2% RH (090% RH), ±3% ±0.2°C / ±0.36°F (20°C / 68°F), ±0.7°C / ±1.26°F (-40 resp.100 5)≤ 15 sec. channel 1: T [°C/°F] channel 2: RH [%], dv [g/m³ bendence: RH: ±0.03% RH/°C HA040203	oreholes 40212°F) RH (90100% RH) 0°C / -40 resp. 212°F)], Td [°C/°F], r [g/kg, gr/lb]
Air Velocity Probes:			
Air velocity probe Ø6mm (0.24")			
	Application:Working range:Accuracy: $(050^{\circ}C/32122^{\circ}F)$ Response time τ_9 Measurand:Order code:	air velocity measurement in accuracy requirements 02m/s (0400ft/min) $-2070^{\circ}C (-4158^{\circ}F)$ 0.082m/s (15400ft/min): $\pm (0.04m/s / 8tt/min+ 1% of m. v.)$ $\pm 0.7^{\circ}C (\pm 1.26^{\circ}F)$ $0 \le 1.5$ sec. channel 1: v [m/s, ft/min] channel 2: T [°C/°F] HA040401	small places and for high 020m/s (04000ft/min) $-2070^{\circ}C (-4158^{\circ}F)$ 0.220m/s (404000ft/min): $\pm (0.2m/s / 39ft/min + 2% of m. v.)$ $\pm 0.7^{\circ}C (\pm 1.26^{\circ}F)$ ≤ 1.5 sec. channel 1: v [m/s, ft/min] channel 2: T [°C/°F] HA040402
Air velocity probe \varnothing 12mm (0.47")			
200 (7.9°) 18 (0.7°) 200 (7.9°) 18 (0.7°) 200 (7.9°) 200 (7.9	Application: Working range: Accuracy: Response time τ ₉ Measurand: Order code:	air velocity measurement in 020m/s (04000ft/min) / 05 0.220m/s (404000ft/min): $\pm (0.2m/s / 39ft/min + 3% of models of mode$	0°C (32122°F)

Temperature Probes: PT100 cut-in probe Application: temperature measurement in solid, liquid and powdery media 150 (5.9") Working range: -40...400°C (-40...752°F) Accuracy: PT100 class B, basic device: ±0.5°C (±0.9°F) Response time τ_{90} : 10 sec. Ø4 0.16") Cable length: 1m (3.28ft) HA040101 Order code: PT100 immersion probe Application: temperature measurement in gaseous, liquid and powdery media 150 (5.9") Working range: -40...400°C (-40...752°F) Accuracy: PT100 class A, basic device: ±0.5°C (±0.9°F) Response time τ_{90} : 10 sec. Ø3 (0.12") Cable length: 1m (3.28ft) Order code: HA040102 PT100 cut-in food probe temperature measurement in solid, liquid and powdery food Application: Working range: -40...400°C (-40...752°F) 110 (4.3") 150 (5.9") PT100 class A, basic device: ±0.5°C (±0.9°F) Accuracy: Response time τ_{90} : 10 sec. Cable length: 1m (3.28ft) 0.16") Ø16 (0.6") Order code: HA040104 1) Attend to working temperature range of grip of sensing probe! PT100 surface probe Application: measurement probe with a spring flexure, which undergoes 150 (5.9") a defined deflection when pressed against the surface. Working range: -50...400°C (-58...752°F) (grip of sensing probe up to approx. 80°C 176°F) Accuracy: PT100 class B, basic device: ±0.5°C (±0.9°F) 18") 18") spring deflection <u>4</u>0 Response time τ_{90} : 10 sec. (at even, smooth or metallic surfaces) Cable length: 1m (3.28ft) approx. 5 (0.2") Order code: HA040105 **Oil Probe:** Oil probe Ø12mm (0.47") measurement of moisture in mineral und synthetic oil Application: $\begin{array}{l} \text{0...1 a}_{w} / 0 \text{...20000ppm} / -40 \text{...120}^{\circ}\text{C} (-40 \text{...248}^{\circ}\text{F}) \\ \pm 0.02a_{w} (0 \text{...0.9a}_{w}), \pm 0.03a_{w} (0.9 \text{...1a}_{w}) \\ \pm 0.2^{\circ}\text{C} / \pm 0.36^{\circ}\text{F} (20^{\circ}\text{C} / 68^{\circ}\text{F}), \\ \pm 0.5^{\circ}\text{C} / \pm 0.9^{\circ}\text{F} (-40 \text{ resp. } 120^{\circ}\text{C} / -40 \text{ resp. } 248^{\circ}\text{F}) \\ \pm 0.5^{\circ}\text{C} / \pm 0.9^{\circ}\text{F} (-40 \text{ resp. } 120^{\circ}\text{C} / -40 \text{ resp. } 248^{\circ}\text{F}) \end{array}$ Working range: 200 (7.87") 32 (1.26") Accuracy: Response time $\tau_{90} \leq 10$ min (in still oil) Ø12 0.47") Pressure range: 0.01...20bar (0.15...300psi) 1/2" ISO or 1/2 NPT channel 1: T [°C/°F] Measurand: channel 2: aw [] oder x [ppm] oil specific parameters are adjustable at the basic device Temperature dependence: a_w: ±0.0003a_w/°C (a_w°F) Order code: 1/2 ISO: **HA040204** 1/2 NPT: **HA040206** Ordering Guide MODEL PROBES ACCESSORIES basic device (OMNIPORT 20) (incl. 2m (6.6ft) probe cable) RH/T HVAC probe RH/T high temperature probe (HA040201) stainless steel sintered filter (for Ø12mm RH/T probe) (HA010103) PTFE - filter (for Ø12mm RH/T probe (HA010105) (HA040202 RH/T miniature probe (HA040203) metal grid filter (for Ø12mm RH/T probe) (HA010106)

PT100 cut-in probe PT100 immersion probe PT100 cut-in food probe PT100 cut-in food probe PT100 surface probe(HA040102) (HA040104) (HA040104) PT100 surface probecarrying case big (basic device + 5 probes) carrying case small (basic device + 1 probe)(HA040902) (HA040904)air velocity probe Ø6mm (0.47r) - 020m/s (04000t/min) air velocity probe(HA040401) (HA040402) air velocity probe(HA040401) (HA040402) air velocity probe(HA040401) (HA040402) (HA040402) air velocity probe (HA040401) (HA040402) (HA040402) air velocity probe (HA040401) (HA040402) (HA040403)oil probe - 1/2" ISO oil probe - 1/2" NPT(HA040204) (HA040204) (HA040204)(HA040204) (HA040204) (HA040204)probe cable 2m (HA040403)(HA010813) (HA010815)oil probe - 1/2" NPT(HA040204) (HA040204) oil probe - 1/2" NPT(HA040204) (HA040204) (HA040204)(Ha040204) (HA040204)ISO standard calibration package (refer to data sheet "OEKD Calibration Laboratory")		· · · · · · · · · · · · · · · · · · ·		(
PT100 surface probe (HA040105) air velocity probe ball valve set 1/2" ISO for oil probe (HA050101) Ø6mm (0.247) - 020m/s (04000t/min) (HA040401) probe cable 2m (HA010813) air velocity probe (HA040402) probe cable 5m (HA010814) Ø6mm (0.477) - 020m/s (04000t/min) (HA040402) humidity standards / calibration device (refer to data sheet oil probe - 1/2" ISO (HA040204) humidity standards / calibration device (refer to data sheet	PT100 immersion probe	(HA040102)		
Ø6mm (0.24 ²) - 02m/s (0400t/min) air velocity probe (HA040401) air velocity probe probe cable 2m (HA010813) probe cable 5m Ø6mm (0.47 ²) - 020m/s (04000t/min) air velocity probe Ø12mm (0.47 ²) (HA040402) (HA040403) probe cable 2m (HA010813) probe cable 5m oil probe - 1/2 ⁿ ISO (HA040204) (HA040204) humidity standards / calibration device "humidity calibration set")	PT100 surface probe			
Ø6mm (0.47) - 020m/s (04000t/min) (HA040402) (HA040403) probe cable 10m (HA010815) air velocity probe Ø12mm (0.47") (HA040403) humidity standards / calibration device (refer to data sheet "humidity calibration set")	Ø6mm (0.24") - 02m/s (0400ft/min)	(HA040401)		
oil probe - 1/2" ISO (HA040204) humidity standards / calibration device (refer to data sheet "humidity calibration set")	Ø6mm (0.47") - 020m/s (04000ft/min)			
ISO standard calibration package (refer to data sheet "OEKD Calibration Laboratory")	oil probe - 1/2" ISO	(HA040204)	"h	umidity calibration set")
		(HAU40206)	ISO standard calibration package "OEKD	(refer to data sheet Calibration Laboratory")

Order Example.

OMNIPORT 20, HA040201, HA040202, HA040401, HA010401, HA040902 model: basic device OMNIPORT 20 probes: RH/T HVAC probe, RH/T high temperature probe, air velocity probe Ø6mm (0.24") - 0...2m/s (0...400ft/min) accessories: calibration device for sensor probes 12mm (0.47") - horizontal mounting, carrying case big

OMNIPORT 20

HUMIPORT

Humidity / Temperature Hand-Helds

Hand-held measurement of relevant climatic data is becoming more and more important. Thermo-Hygrometers of the HUMIPORT series set new standards because of the combination of the latest technology and design.

Excellent readability of the large and illuminated display, the simple thumbwheel operation and the robust case allow the use in tough industrial environments. Latest technology and the well proven E+E humidity sensor guarantee highest accuracy and long term stable measurements.

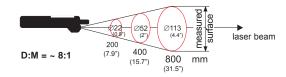
The HUMIPORT measures relative humidity [% RH] and temperature [°C or °F] and calculates dew point temperature [°C or °F], absolute humidity [g/m³] and mixing ratio [g/kg or gr/lb].

HUMIPORT10/20 Thermo-Hygrometers are available in a practical carrying case. The set contains a HUMIPORT incl. an E+E factory certificate and a humidity calibration device with 5 ampoules calibration fluid (80% RH).

Thermo - hygrometer and laser pyrometer of the HUMIPORT 05 IR series provide 3 operation modes:

TH-mode:		Temperature / humidity measurement In this mode the hand-held offers you all functions of the HUMIPORT 05 series.
IR-mode, infrared:	-	Contact-free surface temperature measurement with measurement position marking
DP-mode:		Dew point temperature / surface temperature measurement Dew point detection on walls

Product Comparison HUMIPORT Series _


Functions	HUMIPORT 05	HUMIPORT 05 IR	HUMIPORT 10	HUMIPORT 20	Comment
measurement: - relative humidity and temperature - surface temperature	\checkmark	\checkmark	\checkmark	\checkmark	
calculation: - dew point temperature [°C or °F]	\checkmark	\checkmark	\checkmark	\checkmark	
 absolute humidity [g/m³] 	\checkmark		\checkmark	\checkmark	
 mixing ratio [g/kg or gr/lb] 	\checkmark		\checkmark	\checkmark	
dew point detection on walls		\checkmark			
alarm function		\checkmark			
HOLD / MIN / MAX / AVG readout	\checkmark	\checkmark	\checkmark	\checkmark	
SI- / US- units selectable	\checkmark	\checkmark	\checkmark	\checkmark	
easy thumb-wheel operation	\checkmark	\checkmark	\checkmark	\checkmark	
1 point humidity and temperature calibration	\checkmark	\checkmark	\checkmark	\checkmark	
2 point humidity calibration			\checkmark	\checkmark	
illuminated display			\checkmark	\checkmark	
auto power off	\checkmark	\checkmark	\checkmark	\checkmark	
real time clock			\checkmark	\checkmark	
probe fixed	\checkmark	\checkmark	\checkmark		
remote probe 1.5m (5ft)				\checkmark	
HUMIPORT 10/20 Set (carrying case incl. HUMIPORT humidity calibration device, 5 ampoules with calibration			\checkmark	\checkmark	optional
fluid (for 80% RH) and an E+E factory certificate)					
protection cover	\checkmark	\checkmark			optional

		HUMIPORT 05	HUMIPORT 05 IR	HUMIPORT 10/20
easuring value	S			
Sensor type	relative humidity	HC101	HC101	HC101
	temperature	NTC	NTC	NTC
	surface temperature		Thermopile	
Measuring	relative humidity	595% RH	595% RH	098% RH
range	temperature	-2050°C (-4122°F)	-2050°C (-4122°F)	-2050°C (-4122°F)
	dew point at 20°C (68°F)	-1519°C (566°F)	-	-2019°C (-466°F)
	mixing ratio at 20°C (68°F)	1.1814g/kg (8.2698gr/lb)	0.7814g/kg (5.4698gr/lb)
	surface temperature		-2060°C (-4140°F)	
Accuracy	relative humidity	±2% RH	±2% RH	±2% RH
	temperature	±0.4°C (040°C) (±0.7°F at 32104°F)	±0.4°C (040°C) (±0.7°F at 32104°F)	±0.3°C (040°C) (±0.54°F at 32104°F ₎
		±0.7°C (-2050°C) (±1.3°F at -4122°F)	±0.7°C (-2050°C) (±1.3°F at -4122°F)	±0.5°C (-2050°C) (±0.9°F at -4122°F)
	dew point at 20°C (68°F)	± (4.460.64°C) ± (8.031.15°F)		± (4.330.45°C) ± (7.790.81°F)
	mixing ratio at 20°C (68°F)	± (0.440.57g/kg) ± (3.083.99gr/lb)		± (0.290.4g/kg) ± (2.032.8gr/lb)
	surface temperature		±2°C (±3.6°F) (T _{obj} > 0°C (32°F); T _{amb} > 10°C (50°F))	
Resolution	relative humidity	0.1% RH	0.1% RH	0.1% RH
	temperature	0.1°C (0.18°F)	0.1°C (0.18°F)	0.1°C (0.18°F)
	surface temperature		0.1°C (0.18°F)	
neral	I			
Supply volta	qe	9V battery	9V battery	4x 1.5V AA battery
Battery lifeti		typ. > 150h	max. 200h - TH mode 10h - IR/DP mode	typ. > 500h
Working terr	perature range	housing: 050°C (32122°F)	housing: 050°C (32122°F)	housing: 050°C (32122°F)
		probe: -2050°C (-4122°F)	probe: -2050°C (-4122°F)	probe: -2050°C (-4122°F)
-	perature range		-3060°C (-22140°F)	-3060°C (-22140°F)
Display		LCD, 45x32mm (1.8x1.3")	LCD, 45x32mm (1.8x1.3")	LCD, 90x50mm (3.5x1.9") illuminated
Measuring o	ptics ¹⁾		~ 8:1	
CE compatit	pility according	EN61000-6-2 EN50147-3	EN61000-6-2 EN50147-3	EN50081-2 EN50082-2 EN61000-4-2 EN61000-4 EN55011
Housina / pr	otection class	ABS / IP40	ABS / IP40	ABS / IP40
Dimensions		housing: 140 x 48 x 25mm (5.5.x1.9x1")	housing: 140 x 48 x 25mm (5.5.x1.9x1")	housing: 145 x 85 x 37mm (5.7x3.3x1.5")
				HUMIPORT 20: cable length: approx. 1.5m (4.9
Weight		ca. 200g (0.5 lbs)	ca. 200g (0.5 lbs)	ca. 400g (1 lbs)

Technical Data

1) <u>Distance : Measured surface (D:M)</u> For accurate measurements, the target must be at least twice as big as the measured surface (red spot of the laser beam). The determined temperature is the average temperature of the measured surface.

Order information

ACCESSORIES MODEL HUMIPORT 05 (HUMIPORT 05) Metal grid filter for average pollutions (HA010106) HUMIPORT 05 IR (HUMIPORT 05 IR) Stainless steel sintered filter for strong pollutions (HA010103) HUMIPORT 10 (HUMIPORT 10) Protection cover for HUMIPORT 05 and HUMIPORT 05 IR (HA040903) HUMIPORT 20 (HUMIPORT 20) HUMIPORT 10 Set (HUMIPORT 10-Set) HUMIPORT 20 Set (HUMIPORT 20-Set) HUMIPORT

125

THERMOPORT 20

Hand-held thermometers of the THERMOPORT series set new standards because of the combination of the latest technology and design.

Excellent readability of the very large and illuminated display, the simple thumbwheel operation and the very robust case also allow usage in tough industrial environments.

Two measuring channels, one to connect a PT100 probe and the other to connect a thermocouple probe (E/K/J/N/R/S/T type), provide measurements between -200...1200°C (-328...2192°F).

Temperature Hand-Held

Features_____

PT100 + thermocouple connectors large, illuminated display HOLD / MIN / MAX / AVG readout auto power off real time clock °C / °F selectable recalibration by user

Technical Data

Measuring values

	Channel 1			Channel 2	
Sensor type	PT100 (4-wires)			thermocouple	
Measuring range	-200500°C (-328	932°F)	-2001200°C (-3282192°F)		
Accuracy electronics	±0.1°C (-100200 ±0.18°F (-148392°F)	°C) otherwise ±0.2°C otherwise ±0.36°F		± (0.5°C/0.9°F ± 0.2% 0	of AVG)
Resolution		0°C) otherwise ±0.1°C		0.1°C (0.18°F)	
General					
Supply voltage	4x 1.5V AA alkali-	manganese battery			
Battery lifetime	typ. > 500h				
Working temperature range	050°C (32122°F	·)			
CE compatibility according	EN50081-2 EN61000-4-2	EN50082-2 EN61000-4-3	EN55011		CE
Housing / protection class	ABS / IP40				
Dimensions (HxWxD)	145 x 85 x 37 mn	n (5.7 x 3.3 x 1.5")			
Weight	approx. 400g (1 l	bs)			
Display	LC display, 90 x 5	50 mm (3.5 x 2"), illumina	ited		

Ordering Guide

MODEL

portable thermometer without sensing probe

(THERMOPORT 20)

Temperature Probes: PT100 cut-in probe, short Application: solid, liquid and powdery media -40...400°C (-40...752°F) Measuring range: 150 (5.9") Type of sensing probe: PT100 class B in a stainless steel protection tube Response time τ_{90} : 10 sec. approx. 1m (3.3ft), PUR-cable and handgrip applicable Cable length: Ø4 up to 80°C (176°F) Order code: HA040101 Accurate PT100 immersion probe, short and long version Application: gaseous, liquid and powdery media -40...400°C (-40...752°F) Measuring range: 150 (5.9") / 300 (11.8") Type of sensing probe: PT100 class A in a stainless steel protection tube Response time τ_{90} : 10 sec. Cable length: approx. 1m (3.3ft), PUR-cable and handgrip applicable $\tilde{\mathbb{O}}$ 0.1") up to 80°C (176°F) Order code: short (150mm): HA040102 long (300mm): HA040103 Robust and accureate PT100 cut-in food probe made of stainless steel Application: solid, liquid and powdery media Measuring range: -40...400°C (-40...752°F) 110 (4.3") 150 (5.9") Type of sensing probe: PT100 class A Response time τ_{90} : 10 sec. approx. 1m (3.3ft), PUR-cable and handgrip applicable Cable length: 0.2") Ø16 (0.6") up to 80°C (176°F) HA040104 Order code: PT100 surface probe Application: measurement probe with a spring flexure, which undergoes 150 (5.9") a defined deflection when pressed against the surface. Working range: -50...400°C (-58...752°F) (grip of sensing probe up to approx. 80°C 176°F) ß 18") PT100 class B, basic device: ±0.5°C (±0.9°F) Accuracy: spring deflection **4**0 Response time τ_{90} : 10 sec. (at even, smooth or metallic surfaces) approx. 5 (0.2") Cable length: 1m (3.28ft) Order code: HA040105 Fast thermocouple-immersion probe for temperatures up to 1100°C (2012°F) Application: liquid and powdery media -50...1100°C (-58...2012°F) Measuring range: 150 (5.9") Type of sensing probe: Typ K, cl. 1, Inconel Response time τ_{90} : 4 sec. Ø1.5 Cable length: approx. 1m (3.3ft), cable and handgrip applicable (0.06") up to 80°C (176°F) Order code: HA040302 Thermocouple surface sensor for temperatures up to 600°C (1112°F) solid media Application: -50...600°C (-58...1112°F)¹⁾ Measuring range: 150 (5.9") Type of sensing probe: Type K, cl. 1, stainless steel protection tube with nickel contact-plate Response time τ_{90} : 5 sec 0.1") 0.2") Cable length: approx. 1m (3.3ft), cable and handgrip applicable up to 80°C (176°F) Order code: HA040303 Magnetic thermocouple surface sensor, spring-mounted thermocouple, connection via 2m PTFE cable up to 150°C (302°F) Application: solid media -50...150°C (-58...302°F)¹⁾ Measuring range: Type of sensing probe: Typ K, cl. 1 Cable length: approx. 2m (6.6ft), PTFE cable and handgrip applicable up to 150°C (302°F) cable length: Order code: HA040304 2000 (6.6ft) Ø4 (0.2") 30 (1.2")

1) Pay attention to the approved working temperatrue range of the probe grip!

Calibration

High-precision humidity calibrator HUMOR 20

Accredited E+E calibration services for relative humidity, air velocity and temperature

ELEKTRONIK

HUMOR 20

High-precision Humidity Calibrator

The role of humidity calibrations that are accurate, reproducible, and documentable is becoming more and more important.

ISO quality guidelines and regulations according to FDA guidelines in the pharmaceutical industry, etc., require that humidity instruments have a traceable, accurate calibration.

The humidity calibrator HUMOR 20 developed by E+E is the ideal reference instrument for these requirements.

The HUMOR 20 can be used in the humidity range of 10-95% RH both for monitoring cylindrical sensors (transmitters, hand-held instruments,...) and also for monitoring instruments with cubic dimensions (data loggers, wall instruments,...). A temperature sensor integrated in the measurement chamber also permits the monitoring of an optional temperature output.

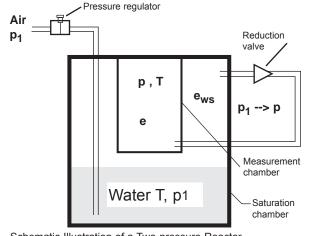
The HUMOR 20 is traceable to international standards and can be delivered with an official, internationally recognised OEKD calibration certificate. Due to its high accuracy, the HUMOR 20 is the basis for accredited calibration laboratories for relative humidity.

Based on its operating principle, the HUMOR 20 can be used under typical conditions in a laboratory climate. This means that expensive, fully air-conditioned rooms are not necessary. For operation HUMOR 20 requires only distilled water, filtered oil-free air with a pressure of 10 bar and a power supply between 90-230V AC. The

specimen can be powered by 24V DC that is available directly on the HUMOR 20.

Operation

The operation of the HUMOR 20 is based on a fundamental two-pressure process and thus is similar to instruments used in national bureaus for standards. Air or nitrogen at a pressure \mathbf{p}_1 is led through a waterfilled saturation chamber and saturated to 100% RH at \mathbf{p}_1 . By means of a reduction valve, the saturated air is reduced to the ambient pressure \mathbf{p} and fed into the measurement chamber. Due to the construction, the saturation chamber and the measurement chamber are at the same temperature. Under these conditions, the water-vapour partial pressure \mathbf{e}_{ws} is reduced at the same ratio as the total pressure.


Essentially, the following applies:

 $e = e_{ws} * p / p_1$

From this it follows that: $\mathbf{RH} = \mathbf{e} / \mathbf{e}_{ws} = \mathbf{p} / \mathbf{p}_1$

Schematic Illustration of a Two-pressure Reactor

Thus, the generated relative humidity essentially depends on the ratio of the two pressures. Constructionspecific deviations from this ratio are corrected during factory adjustments. By adjusting the pressure \mathbf{p}_1 the relative humidity is brought to the desired value in the measurement chamber.

v2.8

Typical Applications

calibration laboratories reference device bureau of standards manufacturers of measurement instruments highest accuracy traceable calibration independent of ambient temperature easy handling traceable to international standards OEKD certificatable

Automatic Calibration Module

The optional available Automatic Calibration Module enables an automatic set point adjustment of the desired reference humidity. With the software, included in the scope of supply, checkpoints, stabilisation times, etc. can be set. Furthermore the instrument allows for an automatic print out of a calibration protocol for a transmitter with analogue standard interface.

Calibration and Adjustment using HUMOR 20.

24V DC electrical supply for the test sample are provided directly at HUMOR 20.

Furthermore, four inputs for the voltage or current outputs of transmitters are available when using the Automatic Calibration Module for generating calibration protocols.

The software which is included in the scope of supply allows the user to record measurement values in a log file, to print out calibration protocols and to configure or to readjust the HUMOR 20.

Software - Features:

- Freely selectable numbers of measuring points and stabilisation times when using the Automatic Calibration Module
- Creation and print out of professional calibration protocols with:
 - Specimen number
 - Calibration date
 - Reference and actual values
- Temperature display can be switched between°C and °F
- 1-point customer humidity calibration of the HUMOR 20
- 6-point customer humidity calibration of the HUMOR 20
- 1-point customer temperature calibration
- Reset of HUMOR 20 to factory calibration

Features

Technical Data

Function principle	two-pressure-reactor
Working range	1095% RH
Accuracy of measurement ^{1) 2)}	
(Traceable to international standards, administrated by	0,75
NIST, PTB, BEV)	0,50
	0,25
standards, administrated by NIST, PTB, BEV)	0,00
	10 20 30 40 50 60 70 80 90 95 0,25
	-0,25
	-0,50
	-0,75
	-1,00
	relative humidity Uw [% RH]
Accuracy temperature measure-	
ment in measuring chamber ²⁾	typ. ±0.3°C (±0.54°F)
Power supply	90230V AC
Work equipment	 compressed air, filtered and free of oil or nitrogen N₂ with max. 10bar (1 distilled water
Stabilisation time HUMOR 20	< 3 min/measuring point
Stabilisation time specimen	typ. 20 min/measuring point
Integrated power supply	24V DC, max. 200mA
Number of measuring inputs	4 (switchable between 420mA / 020mA / 01V / 05V / 010
Typ. error for display inputs	Voltage measuring: < 5mV
	Current measuring: < 30µA
Display	Dot-matrix display with backlight
Gas flow	3 l/min
	for RH > 85% the gas flow is reduced to 1.5 l/min at 95% RH
Recommended interval for	
recalibration	1 year
Interface for PC connection	RS232 (COM port)
System requirements for	MS Windows 2000 with SP 2 / Windows XP /
software tools	Windows Vista
Environmental conditions	temperature: 1040°C (50104°F)
	humidity: 1080% RH
Applied harmonised standards	EN 61000-6-4 EN 60068-2-6
	EN 61000-6-2 EN 61010-1
	EN 61326-1 EN 61326-2-3 EN 60068-2-29
Dimensions	400 x 260 x 240 mm (15.7 x 10.2 x 9.4")
	HUMOR 20: about 23kg (51 lbs)

Measuring Chamber

The construction of the measuring chamber allows the calibration and adjustment of cylindrical sensor probes with a diameter of 8-25.5mm (0.3-1") (hand-held instruments, duct-mounted versions, ...) as well as of cubic measuring units (room transmitters, data loggers, ...) with maximum dimensions of 100x85x40mm (3.9x3.3x1.6") or 95x95x40mm (3.9x3.9x1.6").

By using the Plexiglas cover (standard supply), it is possible to calibrate and adjust compact room devices (e.g., the EE10) with the HUMOR 20.

The overall accuracy of the calibration is influenced by the absence of the metal cover. The additional error depends on the position of the specimen in the chamber as well as on the relative humidity.

1) The extended inaccuracy of measurement results from the standard inaccuracy increased by a multiplying factor of K=2.

2) Valid for metal covers for the measuring chambers

Accessories_

Compressor with oil separator

Technical Data:

Supply voltage 10	
supply tollage	00, 120, 200 or 230V AC // 50 or 60Hz
Noise level 45	5dB(A)/Im
Dimensions (I x w x h) 38	80 x 380 x 480 mm (15 x 15 x 18,875 ")
Weight 26	6kg (57lbs)

Optional covers for the measuring chambers

Various covers for the measuring chamber accommodate probes of all diameters available on the market.

With these covers up to four probes can be calibrated simultaneously.

SUITABLE FOR	NUMBER OF FEEDTHROUGHS	ORDER CODE
probe Ø 8 - 12mm (0.3 - 0.5")	3	HA020204
probe Ø 12 - 16mm (0.5 - 0.6")	2	HA020201
probe Ø 16 - 20.5mm (0.6 - 0.8")	1	HA020202
probe Ø 20.5 - 25.5mm (0.8 - 1")	1	HA020203
probe Ø 12mm (0.47 - 0.51")	4	HA020205
probe Ø 12 - 16mm (0.5 - 0.6")	4	HA020207
HUMLOG 10	-	HA020206
adapter for EE32/33-J ¹⁾	1	HA020401

1) only useable in combination with HA020204 or HA020201

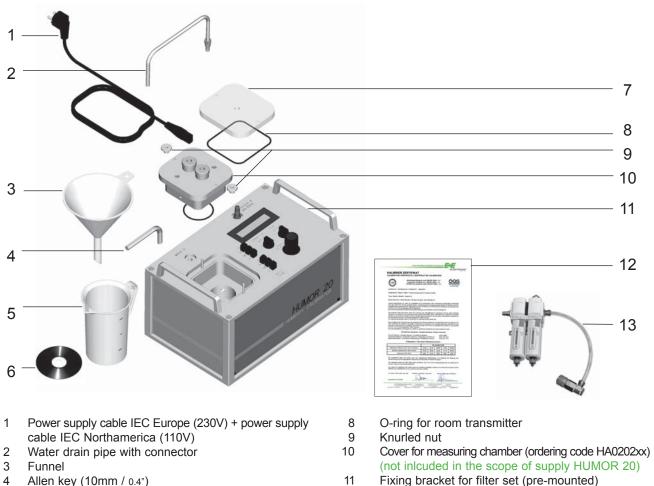
Calibration certificate

To meet the requirements of Quality Management Systems such as ISO9001 regarding calibration and certification of measurement and test instrumentation, the HUMOR 20 is available with an official OEKD accredited calibration certificate.

Automatic Calibration Module

For the fully automatic measurement of the characteristics of a transmitter.

Technical Data:


Weight	- weight of instrument: 9kg (20lbs) - instrument incl. aluminium transport case: 23kg (51lbs)
Dimensions	260x260x240mm (LxBxH); (10.2"x10.2"x9.4")
Supply	90230V
Interface to PC	RS232 (COM Port)
Compressed air supply	min. 9.8bar (142psi); max. 12bar (174bar) oil-free filtered compressed air, max. size of particle: 5µm
Protection class	IP40
Scope of supply	 automatic calibration module power supply cable IEC Europe (230V) power supply cable IEC Northamerica (110V) RS232 connection cable to Humor 20 compressed air connection cable to Humor 20

HUMOR 20

ELEKTRONIK®

12

13

- 4 Allen key (10mm / 0.4")
- 5 Measuring beaker
- Measuring and calibration software 6
- 7 Plexiglas cover for room transmitter testing

Ordering Information

HUMIDITY CALIBRATOR	
HUMOR 20	HUMOR20
Automatic Calibration Module	HA020301
COVER FOR MEASURING CHAMBER	
for 8 - 12 mm (0.3 - 0.5") probe diameter	HA020204
for 12 - 16 mm (0.5 - 0.6") probe diameter	HA020201
for 16 - 20.5 mm (0.6 - 0.8") probe diameter	HA020202
for 20.5 - 25.5 mm (0.8 - 1") probe diameter	HA020203
for 4 probes with 12 - 13 mm (0.47 - 0.51") probe diameter	HA020205
for 12 - 16 mm (0.5 - 0.6") probe diameter	HA020207
for HUMLOG 10	HA020206
Adapter for EE32/33 - model J ¹⁾	HA020401
I) only useable in combination with HA020204 or HA020201	
ACCESSORIES	
Compressor with oil separator for 220V power supply	HA020101
Compressor with oil separator for 110V power supply	HA020102
ÖKD-calibration certificate	OEKD20/xH
USB <=> RS232 converter	HA020110

Works certificate acc. DIN EN 10204-3.1

Filter set with oil separator

Humidity Calibration Set

General ____

The humidity transmitters as all other measuring instruments shall be periodically checked and eventually adjusted. The most simple solution for this purpose is the E+E calibration set.

This set consists of humidity standards and different calibration devices, carefully designed for use with E+E humidity sensor probes.

It guarantees easy and reliable instrument check. The E+E calibration set does not require specially trained technical personnel.

v2.2

Calibration accuracy

The RH of each humidity standard is accurately set by a titration of the chlorine ions.

midity value in % RH accuracy	at 23 ±2°C (73.4 ±3.6 °F)	humidity	value in % RH accuracy a
H ±0.5% R⊦		50% RH	±0.9 % RH
I ±0.5% R⊦		65% RH	±0.9% RH
RH ±0.5% RF		80% RH	±1.2% RH
RH ±0.5% RH		95% RH	±1.2% RH

Calibration Procedure

The calibration device allows the sensor probes to be tightly installed so that the measurement is not influenced by the surrounding air.

A textile pad is placed in the chamber of the calibration device and is saturated with a solution of a known humidity value. In this manner the humidity transmitter can be accurately calibrated.

Humidity Standards

Non saturated lithium chloride solutions serve as humidity standards. These solutions are available in sets of five sealed ampoules, which may be stored an indefinite time. The lithium chloride solutions are non-harmful as they do not produce toxic fumes. Skin contact with them is likewise non-harmful. They are dangerous only if swallowed in large quantities.

Ordering Guide_____

alibration device for sensor probes \varnothing 1015 mm (0.40.6") - horizontal mounting	(HA010401)
alibration device for sensor probes \varnothing 1015 mm (0.40.6") - vertical mounting	(HA010402)
	(114010402)
Humidity Standards	
5 ampoules 05% RH + 5 textile discs	(HA010405)
5 ampoules 10% RH + 5 textile discs	(HA010410)
5 ampoules 35% RH + 5 textile discs	(HA010435)
5 ampoules 50% RH + 5 textile discs	(HA010450)
5 ampoules 80% RH + 5 textile discs	(HA010480)
5 ampoules 95% RH + 5 textile discs	(HA010495)

Calibration Set

E+E Calibration Services

Increasing demands for product quality and the various guidelines for quality control such as ISO9001, QS9000, VDA6.1 and TS16949 require monitoring of measurement and test equipment on a regular basis. Calibrations performed in E+E's calibration labs guarantee the user reliable measurement results and

is the metrological fundament for measurement and test equipment to be in accordance with quality assurance regulations.

Which certificates are available?

- OEKD Certificate
- ISO Calibration Certificate

OEKD CERTIFICATES

The E+E OEKD Laboratory is accredited according to DIN EN ISO/IEC 17025 standard.

The accreditation and inspection is performed by the Federal Ministry of Economy, Family and Youth of the Republic of Austria (BMWFJ). BMWFJ, the Austrian Accreditation Organisation for Calibration laboratories, is member of

- EA (European co-operation for Accreditation)

and of

- ILAC (International Laboratory Accreditation Organisation).

Based on the agreements between the members of EA and ILAC, calibration certificates issued by E+E laboratories are in accordance with worldwide recognized standards. Therefore, the OEKD Calibration Certificates have the highest acceptability and are legally recognized.

Measurement equipment, which require a high level of reliability, such as factory standards, should have an OEKD calibration certificate. Increasing

requirements with respect to traceability in pharmaceutical, biotech and medical industries require also accredited certificates. The OEKD calibration certificates are available for the following physical quantities:

- relative humidity
- temperature
- dew point
- mixing ratio
- specific humidity
- volume ratio
- water vapour density

ISO CALIBRATION CERTIFICATES

An ISO calibration is a comparison to E+E internal reference instruments or systems which are traceable with defined uncertainty to international standards. These calibrations are performed in accordance to an E+E internal procedure, conforming to ISO 9000 and TS 16949 standards.

ISO calibration uses high end measuring equipment and offers price effective information on the calibration status by stating the deviations from reference of the instrument under test.

ISO calibration certificates can cover certain requirements of standards like ISO/QS 9000 / ISO10012-1 / GMP / CFR / VDA ISO TS 16949.

E+E Elektronik can issue ISO calibration certificates for:

- temperature
- relative humidity
- air velocity

	Federal Ministry for Economics and Labour Determichischer Kallbriendienst (DKD)
	CERTIFICATE OF ACCREDITATION
	We confirm that the Calibration Laboratory of
	E + E Elektronik GmbH
	Langwieson 7, A-4209 Engerwitzdorf.
	is accredited for the following quantities:
	humidity of air and temperature
The a	ccreditation was given with the document No. BMWA-96.113/0040-J/11/2005
	dated 17 March 2006.
The	scope of accreditation is included in the accreditation document and in the directory of accredited calibration laboratories of Austria.
	The registration number of this calibration laboratory is OKD 23.
followi las Calibra Gazet	a socialization as performed in accordance with the requirements of the genometric of the genometri
	Vienna, 17 March 2006
Diplate	g. Freisteher Genetic, D., Twench Cristoph, D.,

				ELEKTI
KALIBRIER ZERTIFIKAT		-	36	os
Zentifikat Nr. / Centificate No.: MICDODDO				
Gegenstand / Object 10000000				
Type / Moder axxi:				
Serien Nummer / Serial Number 2000				
Kunde / Customer 10001				
Rückführbare Stand	irds / Triceabi	v Standar	fe :	
Paudrie Relaxers) / Hunstly relaxerse Temperatur Relaxers / Temperature relevance Measures/herbeits / Uncertainty of Measurement	0/98. MeV MKT 100. Pa 5.5% 4, 0.05	ar		
Dia vieweindeten Massemutitungen werden orgalmä des Bweissamtes für Dich wird Vermesungssessen, en Bahmen das seinerschlaschen Kaliterenderstellt. Die mesange pogenereit in von unstage periode in Beneter of Pie Austral Feater Austral für Mercio Vermessamsennen als wiel als often regivierer in	glochweiteger in nuclionatori and a py and Californitor	etilde ander re baceula	er Staden ode	Kalbinist
des Buildesantes für Ein- und Varmesungsinnen im Bahmen bei indernechtischen Kahlensoberupte. The measuring bezammt ein und underge periodical i Blandere of the Australi Parkeet Australy für Metodor Vermagzangsinnenen jas welf ac to other egaluteere ei	glochweiteger in nuclionatori and a py and Californitor	etilde ande re havmalie i dilendesar idt	er Staden ode	Kalbinist
des Buildesantes für Ein- und Varmesungsinnen im Bahmen bei indernechtischen Kahlensoberupte. The measuring bezammt ein und underge periodical i Blandere of the Australi Parkeet Australy für Metodor Vermagzangsinnenen jas welf ac to other egaluteere ei	gleichweitiger in noektration and a ge and Calibrator emotional standa	elicie ande re haonaite (Bordesar rit	er Staden ode	Kaldoleintel Atalienel K
des Budesannes für Eit- und Vernressongeisner In Beteinen die sone sone underge periodeling bestehend im Annessen Festere Andres je sofektion vernressangeisnessel an ein als über optimister Prüftrageb Referenzent / Antrenze sate	pinch-wentger in moltivation and a grand Calibratio emotional atenda nis / Test resul Temp. [12] 3.03	elizie ande re hermalie r diardesan els	er Staaten ode to Die Austrian ten für Eich- of fet. Humidity (5 24	Alabiensel ef
one Buddeastrees for Elso - un'il prevenzagenerem Inferenza sta internetiane in Harman Andrea Internetiane in Harman Andrea for Mattos Vermazarginesent a ved auto giber egistador d Pridregeto References i Antonio este Masser ("Cataloute auto	glocitwentger in realitivation and a ge and Californite landonal iterato res / Test resul Temp. [12] 1.02 1.03	elizie ande re hermalie r diardesan els e	er Staaten ode to the Austrian tes für Eich- of fet. Humidity (N 20 20	Alabienal dational di 0.2 0.2
and Budinessing for Dirk - und Provenzigneisen Releven eine streamber in Aussender Auflich The annex of the sectors of even of even provide the sec- ments of the sectors of even of even provide the sec- streamber of the sectors of even of the sector of the sector Professional Control of the sector of the sector of the sector Relevence of Antonion calas Relevence of Antonion calas	genthemetager in restlemetager in production and a ground California innological stands in / Teast result Temp. [12] 0.03 0.03 0.03 0.03	elizie ande re hermalie r diardesan els	er Staaten ode to Die Austrian ten für Eich- of fet. Humidity (5 24	Alabiensel ef
Bell Christmann für Frühr und Verstensensammensensensensensensensensensensensensense	glechwenger in novikination and a grant Caldhuisten modoruit Itania nin / Teat resul 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	titule ander re Parenalita r diaredesar edi 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	er Staaten oder N Der Austriam Hatt Humstitty (N 20 20 20 20 20 20 20 20 20 20 20 20 20	Automatical Automatical and galling a
and Robinstein für Erfür der Versteren ausgehörten der erstereng sprachen eine der abgeitigt professor Professoren Robinstein für Ausgenen Frauerick auf der Schweiser Professoren Robinstein Erführten aus Robinstein Erführten auf Robinstein Erführten auf Robinstein Berniter Robinstein Berni	glochwonger in novitovitori and a gr and Catholic work motion at the test off / Test result 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	titule ander re Parenalita r diaredesar edi 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	er Staaten oder N Der Austriam Hatt Humstitty (N 20 20 20 20 20 20 20 20 20 20 20 20 20	Automatical Automatical and galling a
and Endowers for Eric and Version equipation provide the Antibiotechic and Version and Version and Version International Procession France Academic Academic Professional International Procession France Academic Academic Professional International Academic Academic Academic Academic International Academic Academic Academic Academic International Academic	glochwonger in novitovitori and a gr and Catholic work motion at the test off / Test result 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	titule ander re Parenalite (Benderan ett) 00 00 00 00 00 00 00 00 00 00 00 00 00	er Staaten oder N Der Austriam Hatt Humstitty (N 20 20 20 20 20 20 20 20 20 20 20 20 20	Radiologian Analogian of 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

OEKD - Calibration Laboratory

Scope of Accreditation of the E+E OEKD Calibration Laboratory_

The E+E OEKD Calibration Laboratory allows following calibrations and with lowest uncertainty of measurement: - RH / T calibrations in the range 0...98% RH / -40...180°C (-40...356°F)

- dew point calibrati	on in the range	-6090°C (-76194°F)
-----------------------	-----------------	--------------------

Physical quantity resp.	Measuring		Smallest measurement uncertainty	
calibration object	range	Measuring conditions	(MVMeasured Value)	Notes
Relative Humidity				
hygrometer for humidity measurement	0%98% RH	gas flow max. 5l/min; air pressure max. 1MPa; temperature range -70200°C (-94392°F) -70 ≤ temperature ≤ -40°C (-94 ≤ temperature ≤ -40°F) -40 ≤ temperature < 0°C (-40 ≤ temperature < 32°F) temperature ≥ 0°C (32°F)	[0.2+0.006.MV] .exp[((-40-t)/30)³]% RH (0.2+0.006.MV)% RH (0.1+0.004.MV)% RH	comparison with 2-pressure generator in combination with temperature measurement chamber (2-pressure-2-temperature - generator)
electronic hygrometer for humidity measurement	1095% RH	25°C ±3°C (77°F ±5.4°F)	(0.4+0.005.MV)% RH	comparison with humidity generator
electronic hygrometer for humidity measurement	1095% RH	25°C ±10°C (77°F ±18°F)	(0.5+0.006.MV)% RH	comparison with humidity generator on site
hygrometer for humidity measurement	1095% RH	090°C (32°F194°F)	(1+0.005.MV)% RH	comparison with chilled mirror hygrometer and resistance thermometer in climate systems, on site as well
devices to generate humidity (rel. humidity generators)	-200°C (-432°F) 080°C (32176°F)	dew point temperature: Td -8095°C (Td -112203°F) measuring temperature: -2080°C (-4176°F) relative humidity: $1\% \le U_W \le 95\%$	(0.3+0.005.MV)% RH (0.15+0.005.MV)% RH	comparison with chilled mirror hygrometer and resistance thermometer in climate systems, on site as well
Dew Point				
dew point hygrometer	Td -8060°C (Td -11276°F) Td -6025°C (Td -7613°F) Td -2570°C (Td -13158°F) Td 7095°C (Td 158203°F)	gas flow max. 5l/min; air pressure 1,000 + 100 / -200 hPa; max. 1MPa in the temperature range -64.695°C (-84.3203°F)	0.05-(60+MV).0.01K 0.050K 0.035K 0.045K	comparison with 2-pressure - generator; for temperature < 0°C (< 32°F) the equivalent frost point temperatures are valid
dew point hygrometer	Td -2585°C (Td -13185°F)	090°C (32194°F)	0.25K	comparison with chilled mirror hygrometer in climate systems, on site as well
devices to generate dew point temperatures (dew point temperature generators)	Td -8060°C (Td -11276°F) Td -6025°C (Td -7613°F) Td -2570°C (Td -13158°F) Td 7095°C (Td 158203°F)	gas flow min. 1l/min; air pressure 1,000 + 100 / -200 hPa	0.07-(60+MV).0.01K 0.070K 0.05K 0.06K	comparison with chilled mirror hygrometer, on site as well
Temperature				
thermometer for measurement of air temperature	-70200°C (-94392°F)	comparative measurement in temperature stabilised measuring chamber, air pressure max. 1MPa	0.05K	comparison with resistance thermometer in gas flow in a temperature measurement chamber
thermometer for measurement of air temperature	-2080°C (-4176°F)	comparative measurement in temperature stabilised measuring chamber, air pressure ~ ambient pressure	0.05K	comparison in systems for generation of defined humidity, on site as well
thermometer for measurement of air temperature	-25100°C (-13212°F)	comparative measurement in block calibrator, air pressure ~ ambient pressure	0.05K	comparison with resistance thermometer, on site as well

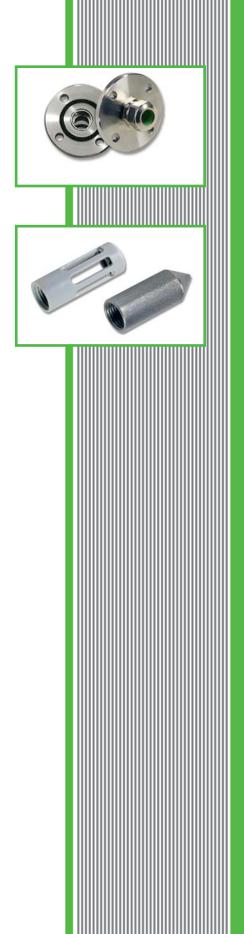
OEKD - Calibration Laboratory

Appendix

Accessories

Product selection guide

Scaling of T-outputs


Humidity measurement basics

Air velocity measurement basics

CO₂ measurement basics

Temperature measurement basics

Humidity calibration basics

Accessories

Filter_

To protect the sensor elements from pollution, the transmitters are equipped with filter caps. The right choice of filters depends on the application and is very important to maintain free operation. Please ask your local E+E distributor.

NAME	ASSEMBLY	FEATURES	TYP. APPLICATIONS	ORDER CODE
membrane filter	material: PC special PTFE foil laminated on plastic carrier size of pores: 1 µm length: 34mm (1.34")	average filter effect temperatures up to max. 80°C (176°F) $t_{10/90}$: 15 s	building automation	HA010101
stainless steel sintered filter	material: sintered stainless steel size of pores: 10 µm length: 33mm (1.30")	for hard mechanical stress and strong pollutions temperatures up to $180^{\circ}C$ (356°F) unsuitable for high humidity measurement t _{10/90} : 30 s	drying processes	HA010103 HA010103EX for EE30EX series
plastic grid filter	material: PC length: 34mm (1.34")	no filter effect - only mechanical protection quick response time $t_{10/90}$: appr. 5 s temperatures up to 120°C (248°F)	hand-held instruments data loggers	HA010104
PTFE - filter	material: sintered PTFE size of pores: 50 µm length: 33mm (1.30")	high chemical resistance temperatures up to 180°C $_{(356^\circ\text{F})}$ $t_{10/90}$: 14 s	drying processes in chemical applications	HA010105
metal grid filter	material: PC with stainless steel wire mesh size of pores: 30 µm length: 34mm (1.34")	for small mechanical stress temperatures up to $120^{\circ}C$ (248°F) average pollution suitable for high humidity applications $t_{10/90}$: 15 s	drying processes danger of saturation or applications with RH > 90 %	HA010106
metal grid filter	material: stainless steel with stainless steel wire mesh size of pores: 30 µm length: 39mm (1.54")	for hard mechanical stress temperatures up to $180^{\circ}C$ ($_{356^{\circ}F}$) average pollution suitable for high humidity measurement $t_{10/90}$: 7 s	drying processes	HA010109
H ₂ O ₂ - filter	material: sintered PTFE size of pores: 50 μm length: 33mm (1.30°); Ø12mm (0.47°)	catalytic filter for H_2O_2 environments $t_{10/90}$: 14 s	sterilization with H_2O_2	HA010115
PTFE stainless steel filter	base body: stainless steel PTFE filter hydrophobic length: 39mm (1.54") Ø12.5mm (0.49")	very good filter effect against environmental influences (e.g: dust, pollutant, salt) very small pore size, pressure of water intake ≥ 0.5 bar fast recovery after condensation interchangeable PTFE membrane temperature range: -40150°C (40302°F) t _{10/90} : 9s	meteorology high humidity applications with condensation	HA010114: complete filter HA010114ME: replacement membrane

Accessories

Mounting Flange_____

Different mounting flanges make the installation of E+E sensor probes easier.

NAME	SUITABLE FOR	DIMENSIONS	ORDER CODE
plastic mounting flange 12mm (0.47°)	HVAC transmitters max. temperature: 60°C (140°F)	A CONTRACT OF CONTRACT	HA010202
stainless steel mounting flange 12mm (0.47")	EE23, EE29, EE31, EE32, EE33	a contraction of the second se	HA010201
stainless steel mounting flange 5mm (0.2')	EE23 - model H EE31 - model H	bore diameter: 13mm material thickness: min. 3mm	HA010208
stainless steel mounting flange 8mm (0.3°)	EE75 EE32/33-MFTJ (temperature probe)	bore diameter: 5.1mm	HA010207
duct mounting kit for EE22/EE07	EE07	60mm 46mm 30mm 5.2mm 2mm	HA010209
wall mounting clip Ø12mm (0.47°)	for all probes with Ø12mm (0.47°) -35105°C (-31221°F)		HA010211

LC Display_____

For on site reading various versions are adjustable with a display.

NAME	SUITABLE FOR		ORDER CODE
LC display + cover	EE30EX		D01
LC display + cover	EE22 EE23 EE29, EE31, EE35, EE36	metal polycarbonate metal polycarbonate metal	D07M D07P D03M D03P D05M
	EE32, EE33	polycarbonate metal	D05P D05M

Power Supply Unit_____

NAME	DESCRIPTION	SUITABLE FOR	ORDER CODE
power supply unit	external plug power supply input: 100 - 240V AC 50-60Hz / 180mA output: 18V DC / 330mA	HVAC and industrial transmitters	V02

Replacement Sensors _____

NAME	DESCRIPTION	SUITABLE FOR	ORDER CODE
replacement sensors	replacement humidity sensor with sensor data	EE29, EE31, EE30EX	FE10 FE10-HC01 (with coating)
	replacement humidity sensor without sensor data	EE23	FE09 FE09-HC01 (with coating)
- China -	replacement temperature sensor		TE38

Radiation Shield_

For outdoor applications the transmitters must be equipped with a radiation shield. This causes a forced ventilation which largely prevents overheating of the sensing probe in the sun. It also protects the sensing probe against dripping water.

NAME	SUITABLE FOR	DIMENSIONS	ORDER CODE
radiation shield for EE21	EE21-xA2x	example: HA010506	HA010501
radiation shield with clamping ring	EE29/31/32/33 with remote sensing probe EE06 EE07		HA010502
radiation shield with thread	EE08		HA010506
<text></text>	EE23		HA010504

Dripping Water Protection_

NAME	DESCRIPTION	SUITABLE FOR	ORDER CODE
dripping water protection	Ø 85mm (3.35")	all sensor probes Ø12mm (0.47")	HA010503

Snap in _____

For quick and easy installation and deinstallation.

NAME	SUITABLE FOR	DIMENSIONS	ORDER CODE
snap in - mounting flange for wall and duct mounting	EE14, EE16 EE21 EE65, EE66	HA010204	for wall mounting: HA010204 for duct mounting: HA010205
bracket for installation onto mounting rails	EE22, EE23, EE29, EE31, EE35, EE36		HA010203

Screw Connection

NAME	SUITABLE FOR	DESCRIPTION	ORDER CODE
adapter M16x1.5 to ½"NPT	general	Adapter M16x1.5 to ½"NPT (US conduit fitting)	HA011101
pressure tight screw connection	EE33-MFTKx, EE32/33-MFTJx	for pressure tight probe assembly up to 20bar (300psi)	HA011102: ½"ISO Ø12mm (0.47") HA011103: ½"NPT Ø12mm (0.47") HA011104: ½"ISO Ø6mm (0.24") HA011105: ½"NPT Ø6mm (0.24")

Reference Probe_____

NAME	SUITABLE FOR	DESCRIPTION	ORDER CODE
reference probe	EE22	EE07 probes with defined measuring values to check the digital/ anlogue conversion of the EE22 basic unit (with test report) Probe 1: 90% RH / 5°C (41°F) Probe 2: 10% RH / 45°C (113°F)	HA010403
replacement probe EE07	EE22	The calibration data are stored in the probe. A fast replacement of the probe without readjustment of the evaluation electronics is guaranteed.	housing stainless steel:EE07-MFT9housing PC / membrane filter:EE07-PFT1housing PC / metal grid filter:EE07-PFT6for coating of sensorsadd HC01

Accessories

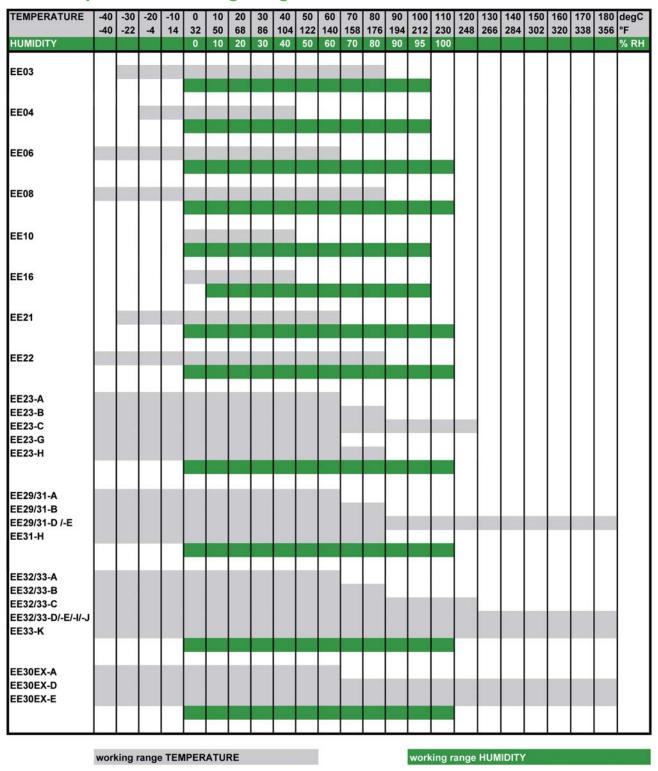
Interface Convertor / Interface Cable_____

NAME	SUITABLE FOR	DESCRIPTION	ORDER CODE
RS232 to RS485	EE31, EE33 with RS485 interface	 converter from RS232 to RS485 supports AutoPro, i.e. automatic adjustment of the Baudrate from 300 bps to 115200 bps enables to control 256 data acquisition modules in a RS485 network isolation 3000 Vrms 	HA010603
RS232 to USB	general	 high speed converter from RS232 to USB certified: Microsoft WHQL approved 	HA020110
E2 to RS232 for EE07	EE07	converter for E2-interface to RS232, incl. software for test and data recording cable length: 2m (6.6ft)	HA011001
E2 to RS232 for EE03	EE03	converter for E2-interface to RS232, incl. software for test and data recording cable length: 2m (6.6tt)	HA011002
E2 to RS232 for EE08	EE08	converter for E2-interface to RS232, incl. software for configuration, adjustment or test cable length: 2m (6.6#)	HA011005
RS232 Interface Cable for Screw Terminals	EE29, EE31, EE30Ex, EE32, EE33, EE35, EE36	RS232 interface cable for connection to screw terminals on the board cable length: 2m (6.6ft)	HA010301
RS232 Interface Cable with Pin Connector	EE29, EE31, EE30Ex, EE32, EE33, EE35, EE36, EE371, EE372, EE381	RS232 interface cable to connect directly on the board cable length: 2m (6.6tt)	HA010304
RS232 Interface Cable with External Plug	EE29, EE31, EE32, EE33, EE35, EE36	RS232 interface cable to plug into the external socket on the housing C06 cable length: 2m (6.6ft)	HA010311

Accessories

Plugs / Sockets / Connecting Cables_____

NAME	SUITABLE FOR	DESCRIPTION	ORDER CODE
M12x1 Flange Coupling for EE07	EE07	I = 50mm (2')	HA010705
M12x1 Flange Coupling for EE08	EE08 type D	flange coupling for housing assembly, I = 200mm (8)	HA010703
M12x1 Flange Receptacle Configurable for EE08	EE08 type D	8 pole flange receptacle configurable, IP67 (NEMA 4)	HA010704
Connecting Cable EE22/EE07	EE07, EE22	connecting cable – sensing probe EE07 with EE22 transmitter	length 2m (6.6ft): HA010801 length 5m (16.4ft): HA010802 length 10m (32.8ft): HA010803
Connecting Cable EE07	EE07	connecting cable with flying leads for sensing probe EE07	length 1m (3.3ft): HA010809 length 2m (6.6ft): HA010810 length 5m (16.4ft): HA010811 length 10m (32.8ft): HA010812
Connecting Cable EE08	EE08 type D	connecting cable with flying leads for sensing probe EE08 type D	length 1.5m (4.9ft): HA010322 length 3m (9.8ft): HA010323 length 5m (16.4ft): HA010324 length 10m (32.8ft): HA010325
Connecting Cable VELOPORT/ OMNIPORT 20	OMNIPORT 20	connecting cable hand-held - probe	length 2m (6.6ft): HA010813 length 5m (16.4ft): HA010814 length 10m (32.8ft): HA010815



Product Selection Guide

Choosing the right transmitter closely tuned to the application with regards to the expected relative humidity and temperature is an absolute must for a perfect operation.

The following table is a guide for the right choice of humidity and temperature transmitters, under consideration of the temperature dependency for the different models. In the marked range you will get an overall accuracy better than $\pm 5\%$ RH.

In case of uncertainty please get in touch with our sales team or ask your local E+E distributor.

Product Comparison - Working Ranges

Product Selection Guide

Scaling of T-outputs

EE08, EE10, EE10-T, EE21, EE22, EE23, EE29, EE30EX, EE31, EE32, EE33, EE35, EE36, **EE75 and EE80**

Following Txx defines the scaling of the outputs for temperature (T), dew point temperature (Td), frost point temperature (Tf) and wet bulb temperature (Tw). The Txx codes are to be used in the order number of EE08, EE10, EE10-T, EE21, EE22, EE23, EE29, EE30EX, EE31, EE32, EE33, EE35, EE36, EE75 and EE80 transmitter series.

Please see the ordering guide at the end of each data sheet.

The limits of the temperature scale shall be within the temperature working range of respective EExx transmitter.

For T scale in°C, please use Txx code alone: Example : EE29-PFTD3025AB6-**T57** T output scale: 4...20mA = -20...+140°C

For T scale in °F, please use E01-Txx: Example:

EE31-PFTE3056AB5-E01-T57

T output scale: 0...10V = -20...+140°F

T01	-30+40	Т35	+100+180	T69	0+20	T103	-30+100
T02	-40+60	Т36	0+150	Т70	-10+25	T104	-60+40
T03	-10+50	T37	0+130	T71	+50+130	T105	-40+40
T04	0+50	T38	-40+70	T72	+50+140	T106	+10+50
T05	0+100	Т39	-30+20	T73	-20+70	T107	0+200
T06	-5+45	T40	+20+180	T74	-40+356	T108	-112+32
T07	0+60	T41	+60+110	T75	+32+212	T109	-40+32
T08	-30+70	T42	-10+100	T76	+32+122	T110	-35+50
T09	-30+120	T43	-35+35	T77	+20+140	T111	-600
T10	-20+120	T44	-40+50	T78	-40+248	T112	0+30
T11	-10+70	T45	-30+50	T79	-40+100	T113	-23+85
T12	-40+120	T46	0+75	Т80	-40+176	T114	+60+180
T13	+15+25	T47	-20+150	T81	-40+250	T115	+10+40
T14	-20+100	T48	-20+50	T82	-40+350	T116	-80+180
T15	+20+120	T49	0+170	Т83	-40+140	T117	+15+35
T16	0+120	Т50	-10+60	T84	-40+300	T118	-70+180
T17	0+70	T51	-50+70	T85	0+140	T119	-25+25
T18	-10+40	T52	-40+180	T86	0+176	T120	-70+60
T19	+10+100	Т53	+80+120	T87	0+248	T121	+55+95
T20	-30+60	T54	-30+35	T88	0+250	T122	-20+20
T21	0+80	Т55	0+40	Т89	0+350	T123	-80+80
T22	-40+80	T56	0+5	Т90	+32+120		
T23	-30+130	T57	-20+140	T91	+32+140		
T24	-20+80	T58	+10+30	T92	+32+180		
T25	-20+60	Т59	-10+30	Т93	+32+248		
T26	0+180	Т60	-20+40	T94	+32+250		
T27	-50 +50	T61	-5+100	Т95	+32+300		
T28	-80+60	T62	-5+50	Т96	+32+132		
T29	-20+180	T63	-80+20	Т97	-60+120		
T30	0+160	T64	-60+60	Т98	-60+212		
T31	-5+55	T65	-60+20	Т99	-110+70		
T32	-800	Т66	-50+100	T100	-76+140		
T33	-40+160	T67	-80+100	T101	+32+350		
T34	-70+40	Т68	-40+150	T102	-15+25		

Measuring Humidity - Basics

Dalton's Law_

Air is a mixture of different gases. Under normal environmental conditions the gases have an ideal behaviour, i.e. each gas molecule can act independently from all others. **Dalton's law** is valid :

The total pressure of a gas is the sum of the partial pressures

 $p \text{ [mbar, hPa]} = p_{N2} + p_{O2} + p_{Ar} + \dots$

0

The partial pressure p is defined as the pressure of a gas, if it would occupy alone the whole volume of the gas mixture.

Water in its gaseous phase (vapour) is also a component of air mixture. Under normal conditions it behaves like an ideal gas. With Dalton's law p becomes:

p [mbar, hPa] =
$$p_{N2} + p_{O2} + p_{Ar} + ...+ e$$

r p [mbar, hPa] = $p_{da} + e$

e partial pressure of (water) vapour

p_{da} partial pressure of dry air

Vapour Pressure Above Liquid_

The concentration of water vapour in air is limited. There is a maximum partial pressure of vapour which depends on temperature. Air at high temperature can take more vapour than at low temperature.

This behaviour can be explained as follows :

The molecules in a liquid are moving with different velocities (or energies) whereby the average energy is proportional to the temperature of the liquid. With respect to energy, the water molecules show a statistical distribution as in Fig. 1.

The molecules with energy lower than the binding energy of the liquid cannot leave the water surface. Those with higher energy can leave the water.

They evaporate and increase the vapour partial pressure in the air (Fig. 2).

The opposite phenomenon happens with the water vapour molecules. Those with lower energy than the binding level of the liquid condensate on the water surface and decrease the vapour partial pressure in the air.

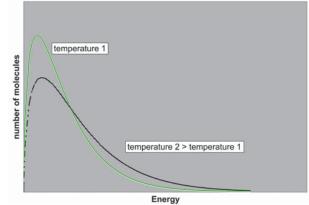


Fig.1: Statistical energy distribution of molecules in a liquid.

Vapour partial pressu	ure e _s
evaporation	condensation
Water	Ļ
	evaporation

Fig.2 : Equilibrium at temperature T.

In a closed volume partly filled with water at temperature T (Fig.2) there is an equilibrium between evaporation and condensation. If there is a lack of water molecules in the moist region, more evaporation will occur and the vapour concentration will increase. In the opposite case more molecules will condense than evaporate and the vapour concentration will decrease.

The balance between evaporation and condensation leads to a vapour partial pressure (respectively concentration) which only depends on temperature.

A temperature rise will increase the energy of water molecules (Fig.1) and the balance will be shifted to higher vapour concentration.

For equilibrium at temperature T the vapour concentration (or water partial pressure e or number of water molecules per m³) is the maximum concentration which can exist at this temperature and cannot be exceeded. A higher concentration would lead to condensation again and after a short time the old balance would be reached.

This vapour concentration is called saturated concentration or in terms of partial pressure

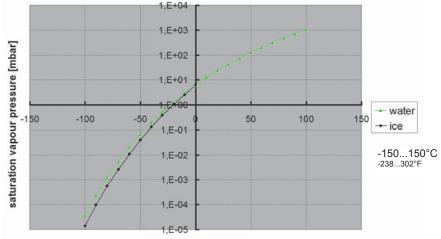
saturation vapour pressure above water e_{ws}

at temperature T.

The saturation pressure above water e_{ws} has an exponential dependence on T and is given in Tab.1.

Vapour Pressure Above Ice_

Below 0.01°C (32.018°F) (triple point of water) water can exist in a liquid phase as well as in a solid phase (ice) whereby the liquid phase is not stable. For temperatures lower than 0.01°C (32.018°F), in addition to vapour pressure above water there is also a vapour pressure above ice. (Tab 2.)


T [°C/°F]	e _{ws} [mbar]	T [°C/°F]	e _{ws} [mbar]
100/212	1014.19	0/32	6.112
90/194	701.82	-10/14	2.8652
80/176	474.16	-20/-4	1.2559
70/158	312.02	-30/-22	0.5103
60/140	199.48	-40/-40	0.1903
50/122	123.53	-50/-58	0.0644
40/104	73.853	-60/-140	0.0195
30/86	42.470	-70/-94	5.187E-03
20/68	23.392	-80/-112	1.190E-03
10/50	12.281	-90/-130	2.298E-04
0.01/32.018	6.117	-100/-148	3.622E-05
	1		

Tab.1: Saturation vapour pressure values e_{ws} above water.

Tab.2: Saturation vapour pressure values e_{is} above ice.

Consequently there are two saturation curves below $0.01^{\circ}C$ (32.018°F) which are given in Fig.3 in a logarithmic scale. From -100°C to 100°C (-48°F to 212°F) the saturation vapour pressure is changing over 8 orders of magnitude.

temperature [degC]

Fig.3: Vapour saturation curves above ice and water. Below the triple point (0.01°C/32.018°F) the curve splits into two graphs.

Real Gas Correction

Up to now we have regarded water vapour as an ideal gas, i.e. water molecules act independently from each other in the air mixture.

In reality there is a small interaction between molecules which leads to a small increase of saturation vapour in air. This is described by an enhancement factor f(p,T).

For normal pressure the enhancement factor is near one and can be neglected. In this case, water vapour can be seen as an ideal gas.

Humidity Functions

Relative Humidity RH [%RH]

Tab.1 and Tab.2 give the values for saturation vapour pressure as a function of temperature. These values are maximum values and cannot be exceeded. Usually the partial vapour pressure is lower.

Relative humidity RH is defined as the ratio between the actual partial vapour pressure e and the saturation vapour pressure above water \mathbf{e}_{ws} :

 $RH = (e / e_{ws})^{*}100 [\% RH]$

Absolute Humidity (vapour density) dv [g/m³ / gr/f³]

is the mass of water in 1 m³ moist air. dv = mv / v [g/m³] mv... mass of water vapour v... air volume

Dew Point Td [°C / °F]

When cooling air with **non saturated vapour pressure e** the partial pressure will stay constant for a while. Simultaneously the relative humidity will increase due to decreasing saturation vapour pressure:

RH = $(e / e_{ws})^*100$ $e_{ws} = e_{ws}(T)$ [%] T decreasing ===> e_{ws} decreasing ===> RH increasing

At 100% RH the partial pressure of vapour **e** in the air equals the saturation vapour pressure above water $\mathbf{e}_{ws}(\mathbf{T})$:

 $e = e_{ws}(T)$

If the temperature decreases further, condensation will start.

The dew point Temperature Td is the temperature where condensation begins.

Mixing Ratio r [g/kg / gr/lb]

r is the mass of water to evaporate and mix with 1 kg dry air to perform a certain relative humidity or partial vapour pressure **e**.

Specific Enthalpy h [kJ/kg / lbf/lb]

The enthalpy of 1 kg moist air with relative humidity **RH** and corresponding mixing ratio **r** at temperature **T** is the total energy you need

- to warm up dry air from 0°C/°F to T
- to evaporate the water (latent heat of water)
- to warm up the vapour from 0°C/°F up to T

The specific enthalpy is a relative quantity, i.e. only variations are of interest, not the absolute value. The variation of enthalpy is the measure of energy required to transform the moist air from one equilibrium state to another.

example 1 :

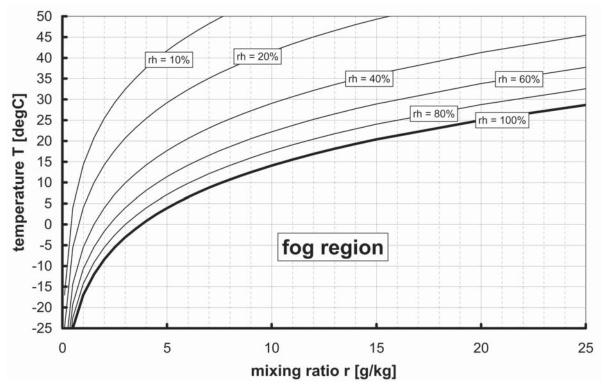
To warm up air from 20°C to 25°C (68°F to 77°F) and humidify the air from 40% RH to 60% RH 20.2 kJ/kg would be needed.

T [°C]		RH [%RH]	h [kJ/kg]
state 1	20	40	34.6
state 2	25	60	54.8
		difference	20.2

example 2 :

Warming up from 20 to 25°C (68°F to 77°F) at constant relative humidity 40% requires only 10.3 kJ/kg.

	T [°C]	RH [%RH]	h [kJ/kg]
state 1	20	40	34.6
state 2	25	40	44.9
		difference	10.3


example 3 :

Warming up from 20 to 25° C (68°F to 77°F) at constant partial vapour pressure (i.e. **e** = const , **r** = const , **Td** = const), the relative humidity decreases from 40% to 29.5% RH. This requires only 5.1 kJ/kg energy.

	T [°C]	RH [%RH]	h [kJ/kg]
state 1	20	40	34.6
state 2	25	29.5	39.7
		difference	5.1

Mollier Diagram

The Mollier diagram is a very useful instrument to solve HVAC-problems graphically. It includes all humidity functions in one chart.

Fig. 4a : Mollier diagram: curves of constant relative humidity . The region below 100% (fog region) is not valid because condensation occurs.

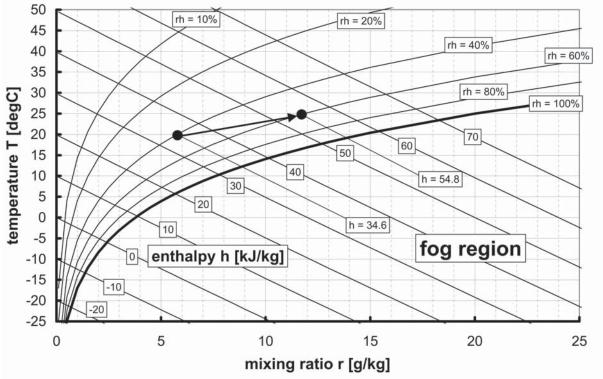
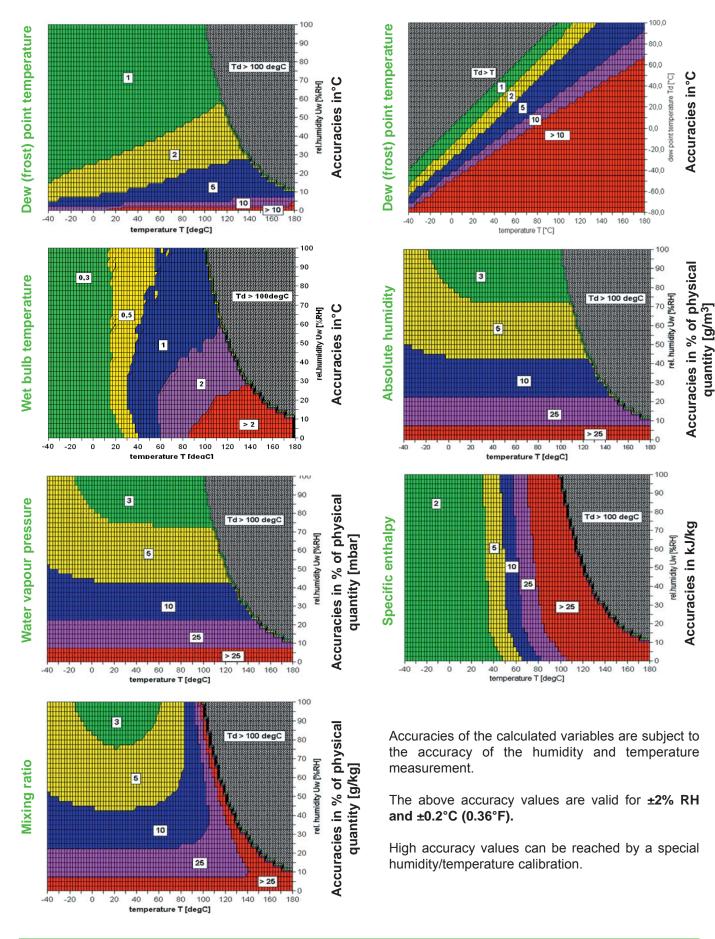
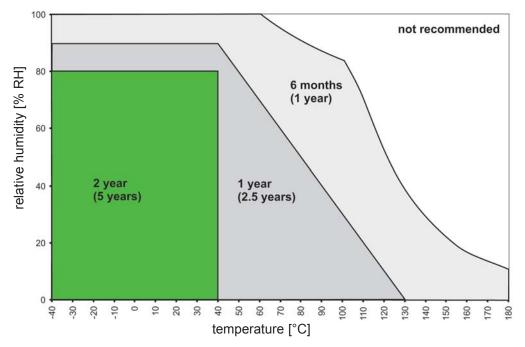



Fig. 4b : Curves of constant enthalpy are added to Fig.4a . Also example 1 is included.

Accuracies of Calculated Variables

Maintenance of RH Transmitters

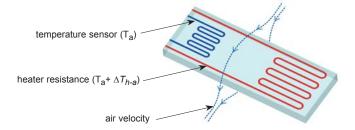

Due to their excellent reliability and long time stability, under normal operation conditions the E+E relative humidity and temperature transmitters do not require any maintenance.

For use in high polluted environment the filter cap shall be periodically exchanged with a new original one.

For high accuracy requirements under extreme humidity and temperature working conditions, the transmitters can be periodically recalibrated.

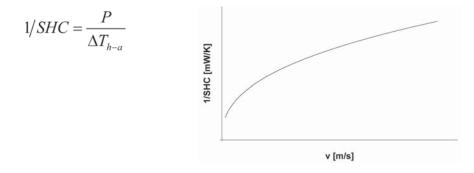
The recalibration interval can be extended by a special E+E low - or high-humidity calibration.

The following graph shall be used as guide for the recalibration interval:


First value for measurement accuracy in the range $\pm 2\%$ RH Second value for measurement accuracy in the range $\pm 5\%$ RH

Measuring Air Velocity - Basics

Operating Principle_


The E+E air velocity sensor utilizes the principle of hot-film anemometry.

The sensor consists of two resistive mesh deposited on a thin glass substrate using cutting-edge thin-film technology. One of the two resistors operates as a temperature sensor and measures the temperature of the flowing medium.

Using electrical current, the other resistive mesh is heated and kept at a constant temperature offset ΔT_{h-a} relative to the temperature of the medium. The medium (air or gas) flowing over the sensor with velocity v is cooling the heated resistor. The power P necessary to keep the temperature offset between heater and temperature resistor constant is a measure for the air velocity.

The sensor characteristic is non-linear and can be described using the self-heating coefficient SHC.

Measuring with E+E velocity meters _

Generally speaking, the accuracy of the measurement depends not only on the accuracy of the velocity meter, but also to a significant extent on the installation conditions.

The accuracy of the velocity meter depends on the quality of the linearization of the characteristic and the reproducibility of the measuring signal.

The innovative design and electrical circuitry of E+E velocity sensors result in excellent reproducibility and long-term stability.

For the linearization of the characteristic, every E+E velocity meter is calibrated in a low-turbulence wind tunnel at the factory. A high-precision Laser Doppler Anemometer (LDA) is used as a reference, allowing only minimal uncertainties in the calibration of the sensor characteristic. The high quality calibration standards of E+E are traceable to the standards at leading international calibration laboratories.

The velocity meter's total uncertainty of measurement U_{total} is calculated from the meter's accuracy $u_{accuracy}$ (linearisation and reproducibility) and the uncertainty of the factory calibration U_{cal} .

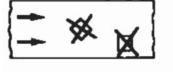
$$U_{total} = k \cdot \sqrt{\left(\frac{U_{cal}}{2}\right)^2 + \left(\frac{u_{accuracy}}{\sqrt{3}}\right)^2}$$

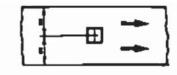
The total uncertainty of measurement is calculated in accordance with EA-4/02, and with regard to GUM (Guide to the Expression of Uncertainty in Measurement).

The enhancement factor k defines the confidence interval. In measurement technique commonly k = 2 is used, corresponding to a confidence level of 95%.

Measuring Air Velocity-Basics

v2.2

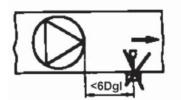

Positioning The Air Velocity Probe_

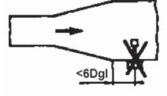

The correct position of the sensing probe is significant for reliable and accurate measurement of the air velocity.

Turbulence appears after fans as well as after bends, junctions or section changes in the duct. Reliable measurements are only possible if the probe is placed far enough from such places. The minimum distance is a function of the duct's diameter. The equivalent diameter of a rectangular duct a x b is

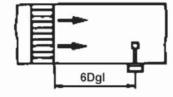
$$\mathsf{D}_{gl} = \frac{\mathbf{2} \cdot \mathbf{a} \cdot \mathbf{b}}{\mathbf{a} + \mathbf{b}}$$

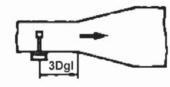
The following pictures are guidelines for correct installation of air velocity transmitters. Reliable measurements can be made by positioning the transmitter after filters (clean rooms), air heaters or air coolers, where the turbulence is very low.




6Dal

distance from barrier


The probe shall be installed in the middle of the duct.


Preferred location after filters, rectifiers, coolers (no turbulences)

The probe shall be placed in front of diffusers or confusers.

Filters and coolers calm down the air flow.

Maintenance of E+E Air Velocity Transmitters _

Due to the absence of moving parts, the E+E air velocity transmitters are very reliable. Their innovative hot film anemometer principle makes them highly insensitive to dust and dirt. Under normal environmental conditions no maintenance is required.

For operation in polluted environment we recommend to clean the sensor periodically by washing it in isopropylalcohol and let it dry. Do not touch or rub.

Theory CO₂ - Measurement

Basics CO₂

Carbon dioxide (CO_2) is a gaseous component of the earth's atmosphere. The concentration of CO_2 in natural ambient air is about 0.04% or 400ppm. With each breath, humans convert oxygen (O_2) into carbon dioxide.

Although carbon dioxide is invisible and odorless, an increased CO_2 -content makes is apparent because humans will notice increased fatigue and reduced concentration. In rooms with high occupancy such as conference rooms and theatres, negative effects become all the more evident.

Modern climate control can assure optimal air quality by adjusting the supply of fresh air based on the measurement of CO_2 concentration in the indoor air. The CO_2 -concentration is regarded as an important measure of indoor air quality.

Guide values for CO₂-concentration:

- ~ 40,000ppm Proportion in exhaled human breath (20I CO_2/h)
- 5,000ppm Limit of CO₂-concentration at the workplace
- > 1,000ppm Fatigue and reduced concentration
- 1,000ppm Recommended CO₂ level of indoor air
- 400ppm Fresh, natural ambient air

Measuring methods ____

CO₂ measurements in HVAC applications are based exclusively on the Infrared (IR) absorption principle.

There are two methods to measure CO₂ concentration with the IR absorption method:

- Non-Dispersive InfraRed (NDIR) absorption sensor
- Photo-acoustic sensor

E+E Elektronik has decided for the NDIR absorption sensor principle. Compared with the photo-acoustic sensors, NDIR sensors offer the following advantages:

- less sensitive to pressure variations
- · less sensitive to vibrations and acoustic interference
- compact design

The E+E NDIR system uses a two-source two-beam procedure to detect a certain wavelength of the infrared light.

A patented auto-calibration procedure uses two IR-sources with distinct operation cycles:

One IR-source operates to measure the CO_2 concentration and generates an IR signal every 30 seconds. The second IR-source, the reference source, is used for the auto-calibration only. This source is activated twice every 24h, which leads to virtually no aging and therefore to negligible drift. The quasi drift-free signal of the reference source is used to offset eventual drifts of the measuring source.

The advantages if the E+E NDIR CO₂ sensing are:

- easy drift compensation with stable IR-reference source
- use of simple IR-filter. Other methods use two IR-filters or complicated switchable IR-filters
- only one IR-detector required
- simple and reliable design

Measuring Temperature - Basics

Definition _

Temperature is the main physical quantity which describes the state of a thermodynamic system.

The measurement of temperature is based on the fact that all objects - and consequently also temperature sensors - are **exchanging energy** with their surroundings.

There are three ways to exchange energy:

- Conduction
- Connection
- Radiation

For an ideal temperature measurement, the temperature sensor and its surroundings are in **thermal equilibrium**, thus there is no energy transfer to or from the sensor. The temperature of the sensor is equal to the surrounding temperature.

To state the absolute temperature, a **reference value** is necessary.

A scale for temperature can be defined knowing the reference value and the temperature behaviour of the sensor. The Kelvin scale is based on the **absolute minimal temperature** 0 K and the triple state of water 273.16 K. The unit is 1 Kelvin = 1 K.

T is used for absolute temperature measured on Kelvin scale. The **triple state of water** is the temperature where water can exist in all its three states.

Apart from the Kelvin scale, the **Celsius scale** is accepted in Europe. The unit of the Celsius scale is $1^{\circ}C = 1K$. The Celsius scale is shifted by 273.15, with respect to the Kelvin scale. At normal atmospheric pressure of 1013.25 mbar the melting of water is at 273.15 K (resp. $0^{\circ}C$).

The symbol for this temperature information is t.

All temperature scales (IPTS-68 or TTS) were replaced 1990 by the **International Temperature Scale ITS-90**. On this new Celsius scale the boiling temperature of water (was 100° C) is no point of reference any more. The new boiling temperature of water acc. ITS-90 is already at t = 99.974°C at normal atmospheric pressure.

Formula: t [°C] = T - 273.15 e.g. 250 K = $(250-273.15)^{\circ}$ C = -23.15°C T [K] = t + 273.15 e.g. 50°C = (50+273.15) K = 323.15 K

Measuring Methods_

The temperature can be measured mechanically or electronically.

Mechanical methods are based e.g. on bimetal, liquid thermometers or gas thermometers. In the **industrial measurement** technology the electronic methods are preferred. These are mainly based on the variation of an electrical resistor as function of temperature. The PTC elements (positive temperature coefficient) are used for thermal protection switches, NTC-elements (negative temperature coefficient) for low accuracy requirements.

For **high accuracy applications** metal resistors are used. The metal employed can be platinum, molybdenum or nickel in form of wire or thin film on a substrate.

E+E temperature transmitters are using **platinum-temperature sensors** with characteristics according **IEC751 and EN60751**.

Humidity Calibration-Basics

It is known and accepted that relative humidity is one of the physical quantities most difficult to calibrate. The main problem is to generate humidity with high accuracy and stability especially for calibration outside a special humidity lab. There are different methods to generate humidity, whereby all classical methods require either temperature stability and uniformity or accurate measurement of the temperature.

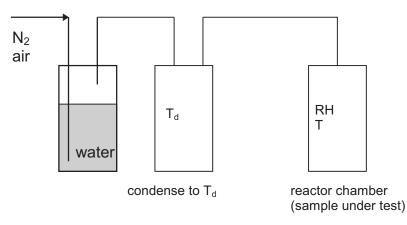
Saturated Salt Solutions_

A closed box partly filled with saturated salt solutions generates relative humidity in the free room above the salt with good accuracy. The value of the relative humidity depends on the type of salt used. It is mainly independent of temperature, but strongly dependent on temperature uniformity. For an accuracy of $\pm 2\%$ RH a temperature uniformity better than 0.5°C (0.9°F) is necessary.

Non Saturated Salt Solutions_

Instead of saturated salts non concentrated LiCl-solutions can be used. The obtained values of the relative humidity depend on the salt concentration.

Mixing Reactor _

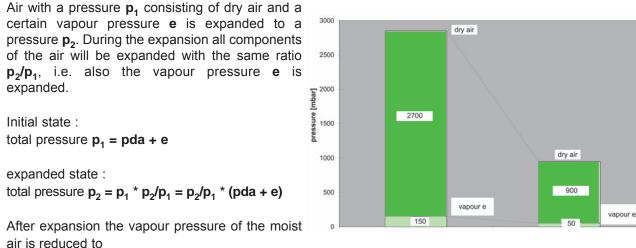

A stream of dry air (0% RH) is splitted into two separated streams. One gas stream is saturated with vapour in a saturation chamber (100% RH), the other one remains dry.

The RH in the measuring chamber is set by adjusting the mixing ratio of the two air streams with a mass flow controller.

Two-Temperature Reactor

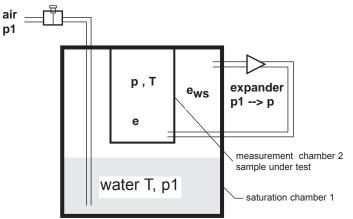
Air or nitrogen is saturated with vapour in a saturation chamber and cooled down to the dew point temperature Td corresponding to the requested relative humidity RH at temperature T. Excess vapour condenses and the vapour partial pressure equals to the saturation partial pressure.

The saturated air warms up to temperature T, the vapour partial pressure corresponds to the required RH. (Principle of reverse dew point mirror)


In an idealy designed two-temperature-reactor the accuracy depends only on the measurement of two temperatures (T, Td).

Main disadvantage is a long stabilisation time when changing the humidity.

v2.1


Two-Pressure Reactor

 $e' = p_2/p_1^* e$

Two-Pressure Humidity Calibrator HUMOR 20_

The two pressure humidity calibrator HUMOR 20 consists of two chambers, one built within the other.

Schematic construction of the two pressure reactor HUMOR 20

Air or nitrogen with a pressure \mathbf{p}_1 is saturated in the saturation chamber 1. The vapor partial pressure \mathbf{e}_{ws} is maximum, the RH is 100%.

Then the saturated air is expanded to the ambient pressure **p** in the measuring chamber 2. The saturation and measuring chambers of HUMOR 20 are built one inside the other and are made from materials with high thermal conductivity. These assures uniform temperature in both chambers.

Under these conditions the partial pressure of vapors is reduced in the same ratio as the total pressure of air and becomes:

Consequently $\mathbf{RH} = \mathbf{e}/\mathbf{e}_{ws} = \mathbf{p}/\mathbf{p}_1$

The generated RH depends only on the ratio of two pressures, which allows a very short stabilisation time. The RH in the measurement chamber is set to the desired value by adjusting the inlet pressure p_1 .

The saturated partial pressure \mathbf{e}_{ws} depends slightly on pressure. The correction is made by a micro-processor.

Practically the generated humidity is calculated from the pressures measured by two pressure sensors with excellent long term stability and reproducibility.

Head Office:

E+E Elektronik Ges.m.b.H.

Langwiesen 7 A-4209 Engerwitzdorf Austria Tel.: +43 7235 605 0 Fax: +43 7235 605 8 info@epluse.com

Technical Offices:

E+E Elektronik China / Beijing

B0820, Hui Bin Office Building No.8, Bei Chen Dong St.; Chao Yang District Beijing 100101, P.R. China Tel.: +86 10 8499 2361 Fax: +86 10 8499 2363 info@epluse.cn

E+E Elektronik Germany

Schöne Aussicht 8 c/1 D-61348 Bad Homburg Tel.: +49 6172 13881 0 Fax: +49 6172 13881 26 info@epluse.de

E+E Elektronik Italy Via Pontida 1 I-20025 Legnano (MI)

Tel.: +39 0331 177 31 02 Fax: +39 0331 177 31 03 info@epluse.it

E+E Elektronik China / Shanghai

Rm. 903, Building No.8, 1968 Gong He Xin Road, Zha Bei District, Shanghai 200072, P.R. China Tel.: +86 21 6117 6129 Fax: +86 21 6117 6131 info@epluse.cn

E+E Elektronik France

Le Norly III, 136 chemin du Moulin Caron F-69130 Ecully Tel.: +33 4 74 72 35 82 Fax: +33 4 78 33 44 39 info@epluse.fr

E+E Elektronik Korea

463-808, #512 Hyundai-Venturevill, 24-1 Gumi-Dong, Bundang-Ku, Seongnam-Si, Kyeonggi-Do (ROK) Tel.: +82 31 728 2223 Fax: +82 31 728 2224 info@epluse.co.kr

www.epluse.com

HUMIDITY DEW POINT AIR VELOCITY TEMPERATURE CO₂ CALIBRATION SERVICE

Represented by: